background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E  
Why Consider Climate Change in Recovery? | i  
 Corporate Graphics and Communications 
Administrative Style Sheet Guide 
¤ Graphic Design Institute 
12345 Main Street • Suite 100 
Spokane, WA  56503 
Phone 203.555.0167 • Fax 203.555.0168 
 
 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E  
Table of Contents | i  
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E  
Table of Contents | i  
Table of Contents 
 
TABLE OF CONTENTS ......................................................................................................... I
 
 
TABLE  OF  BOXES .............................................................................................................. III
 
INTRODUCTION ............................................................................................................... IV
 
WHY CONSIDER CLIMATE CHANGE IN RECOVERY? ........................................................... 1
 
ENHANCING CLIMATE-RESILIENT LIVELIHOODS IN RECOVERY .......................................... 7
 
A
PPROACH 
1:
 
P
OST
-
DISASTER RECOVERY NEEDS ASSESSMENT 
&
 TARGETING FOR LIVELIHOOD RECOVERY
 ...... 7
 
Case 1: Flexibility in flood recovery programs: Key to BRAC’s success in 
Bangladesh ----------------------------------------------------------------------------------------------- 8
 
Case 2:  Government Ownership in Needs Assessment: Key to the Recovery 
Program in Mozambique ----------------------------------------------------------------------------- 9
 
A
PPROACH 
2:
 
C
OMMUNITY
-
BASED NEEDS ASSESSMENT AND TARGETING 
(CBT) .................................... 10
 
Case 3: Community-based targeting in drought: Indonesia -------------------------------  11
 
A
PPROACH 
3:
 
A
GRICULTURAL LIVELIHOOD COPING STRATEGIES
 .......................................................... 12
 
Case 4: Rice in the Weeping Plain: Climate Change Adaptation in Thailand ---------- 14
 
Case 5: Adaptive rice farming system in Thailand ------------------------------------------- 17
 
Case 6: Floating gardens: Adaptation to floods in Bangladesh ---------------------------  18
 
Case 7: Community-Based Fishing Scheme in Gaibandha, Bangladesh ----------------  19
 
Case 8: A new lease on life in Hambantota with traditional salinity-resistant rice - 21
 
A
PPROACH 
4:
 
P
ROTECT INDIGENOUS VARIETIES TO IMPROVE LIVELIHOODS AND BIODIVERSITY
 .................. 21
 
Case 9: Surviving the Friaje: Freak freeze conditions in Peru ----------------------------- 21
 
A
PPROACH 
5:
 
C
LIMATE
-
PROOF LIVELIHOOD RECOVERY THROUGH ASSET PROTECTION
 ............................. 23
 
Case 10: Livestock asset recovery in drought, Anantapur --------------------------------- 23
 
A
PPROACH 
6:
 
C
LIMATE FRIENDLY NATURAL RESOURCE USE IN RECOVERY
.............................................. 24
 
Case 11: Improving farm income in semi-arid Brazil: Photo-voltaic water 
pumping systems ------------------------------------------------------------------------------------- 24
 
A
PPROACH 
7:
 
C
OMPOSTING
:
 A FUTURISTIC ADAPTATION AND MITIGATION INITIATIVE FOR SOLID WASTE 
MANAGEMENT
.......................................................................................................................... 25
 
Case 12: Community solid waste management model in Surabaya City, 
Indonesia ------------------------------------------------------------------------------------------------  25
 
A
PPROACH 
8:
 
I
NNOVATIONS IN LIVELIHOOD SECTOR RECOVERY
 .......................................................... 26
 
Case 13: Hope for Climate Change Refugees in Bangladesh ------------------------------  27
 
Case 14: Vertical Vegetable Gardens in Sri Lanka --------------------------------------------  28
 
ADAPTING TO CLIMATE CHANGE:  BUILD STRONGER INFRASTRUCTURE TO REDUCE 
RISK ................................................................................................................................ 30
 
A
PPROACH 
1:
 
F
LOOD
-
RESILIENT BUILDING IN RECOVERY
 ................................................................... 30
 
Case 15: Flood-resistant houses in rural settlements in Bangladesh ------------------- 31
 
Case 16: Flood-resistant housing; Adapting to climate change in Dhemaji, Assam - 32
 
Case 17: Infrastructure climate-proofing project in Kosrae, Micronesia -------------- 33
 
Case 18: Integrated Climate Change and Flood Management Plan, Pune City, 
India ------------------------------------------------------------------------------------------------------ 34
 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E  
Table of Contents | ii  
A
PPROACH 
2:
 
B
ALANCED 
S
ECTORAL RECOVERY INTERVENTION
:
 INFRASTRUCTURE AND LIVELIHOODS
 ......... 36
 
Case 19: Imbalances in post-recovery Sector Development after 2008 
Mozambique flood  (Not Good Practice) ------------------------------------------------------- 36
 
Case 20: Gaza Province, Chokwe District, Lhate Village ------------------------------------ 37
 
A
PPROACH 
3:
 
L
OCALIZED APPROACHES FOR CLIMATE
-
RESILIENT URBAN FLOOD MANAGEMENT
 ................. 37
 
Case 21: Super levee in Japan: Flood-resilient peri-urban land use adaptation ----- 37
 
Case 22: Damage reduction technology intervention at the 
community/household level in Japan -----------------------------------------------------------  39
 
STRONG INSTITUTIONAL SUPPORT FOR CLIMATE-RESILIENT RECOVERY ........................ 41
 
 
A
PPROACH 
1:
 
I
NTEGRATED CLIMATE RISK MANAGEMENT IN RECOVERY THROUGH LOCAL INSTITUTIONS
 ...... 41
 
Case 23: Disaster risk management and recovery system in Bangladesh ------------- 41
 
A
PPROACH 
2:
 
B
UILDING LOCAL INSTITUTIONS AND LOCAL CAPACITIES FOR INCREASED RESILIENCE TO 
CLIMATE CHANGE
 ...................................................................................................................... 42
 
Case 24:  Role of Community Institutions and Participatory Water Resource 
Management in Drought Adaptation Participatory water resource management 
in drought adaptation in Amhednagar ---------------------------------------------------------- 43
 
A
PPROACH 
3:
 
P
RIORITIZED RECOVERY INTERVENTIONS IN LINE WITH PRE
-
DISASTER DEVELOPMENT 
INITIATIVES
 .............................................................................................................................. 44
 
Case 25: Social infrastructure development, Chokwe, Mozambique -------------------  44
 
A
PPROACH 
4:
 
C
LIMATE
-
RESILIENT RECOVERY THROUGH INSURANCE SERVICES
 ....................................... 45
 
Case 26: Catastrophe risk insurance facility: Caribbean community governments - 46
 
Case 27: Weather-indexed insurance for agriculture in Andhra Pradesh, India ----- 48
 
Case 28: Index-based insurance in Bolivia, Fondo de Mitigación del Riesgo 
Agrícola Bolivia ---------------------------------------------------------------------------------------- 48
 
Case 29: Mangrove rehabilitation and livelihood program in Banda Aceh, 
Indonesia ------------------------------------------------------------------------------------------------  49
 
A
PPROACH 
5:
 
P
OST
-
RECOVERY RISK REDUCTION STRATEGIES WITH RESPECT TO CLIMATE CHANGE
 ............. 50
 
Case 30: Risk Reduction Measures in recovery in the Maldives ------------------------- 50
 
Case 31: Saline Water Intrusion Compel Livelihood Shift from Agriculture to 
Fisheries in Sundarbans, Bangladesh ------------------------------------------------------------ 52
 
A
PPROACH 
6:
 
Z
ONATION AND 
L
AND 
U
SE 
P
LANNING AS A RISK REDUCTION APPROACH TO DEAL WITH 
ADVERSE EFFECTS OF CLIMATE CHANGE
 .......................................................................................... 53
 
A
PPROACH 
7:
 
M
ANAGING CLIMATE RISK
:
 
I
NCORPORATING CLIMATE INFORMATION INTO DECISION
-
MAKING
 .................................................................................................................................. 53
 
Case 32: Managing Climate Risk in Rural Kenya ----------------------------------------------  54
 
A
PPROACH 
8:
 
R
ESPONDING TO 
C
LIMATE 
C
HANGE
 ........................................................................... 55
 
Case 33: Adaptations to Observed Changes in Climate: Reducing Risks of Glacial 
Lake Outburst through Partial Drainage of the Tsho Rolpa Glacial Lake (Nepal) ---- 56
 
COMMUNITY-BASED APPROACHES ................................................................................ 58
 
A
PPROACH 
1:
 
P
REPARING COMMUNITIES FOR CLIMATE
-
RESILIENT RECOVERY
 ........................................ 58
 
Case 34: Community-Based Adaptation to Climate Change in Vietnam ---------------  58
 
Case 35: Recovery support for communities through drought-resilient recovery 
in Andhra Pradesh ------------------------------------------------------------------------------------ 59
 
Case 36: Managing drought through rainwater harvesting initiatives in Gujarat --- 60
 
Case 37: Community-based drought-proof livelihood initiatives:  Kutch, Gujarat -- 62
 
A
PPROACH 
2:
 
P
ARTICIPATORY COMMUNITY LEARNING
:
 
C
LIMATE 
F
IELD 
S
CHOOLS
 .................................. 64
 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E  
Table of Contents | iii  
Case 38: Indonesia's experience with Climate Field Schools (CFS) ---------------------- 64
 
CLIMATE CHANGE AND HUMAN HEALTH IN RECOVERY .................................................. 67
 
 
A
PPROACH 
1:
 
C
LIMATE
-
SMART URBAN AND HEALTH CARE DESIGN FOSTERING SYNERGY BETWEEN 
MITIGATION AND ADAPTATION
 ..................................................................................................... 70
 
Case 39: Heat wave preparations in Spain: Strengthening the Existing Health 
Care System as Part of the Heat Wave Recovery Program -------------------------------- 70
 
A
PPROACH 
2:
 
C
HILDREN
S HEALTH CARE AND CLIMATE CHANGE
 ......................................................... 71
 
IMPLEMENTATION GUIDE............................................................................................... 73
 
A
PPROACH 
1:
 
T
AKE STOCK OF THE AVAILABLE INFORMATION ON HAZARD EXPOSURE
,
 VULNERABILITIES
,
 
AND RISK ASSESSMENT BEFORE MAKING INTERVENTION DECISIONS
 ...................................................... 74
 
A
PPROACH 
2:
 
C
ONSIDER BOTH CLIMATE CHANGE AND NON
-
CLIMATE FACTORS WHEN IMPLEMENTING 
CLIMATE CHANGE ADAPTATION DECISIONS
 ...................................................................................... 75
 
Case 40:  Sea-Level-Influenced Salinity: Bangladesh ----------------------------------------  76
 
A
PPROACH 
3:
 
V
ULNERABILITY REDUCTION AND RISK REDUCTION
:
 
A
DAPTATIONS ALONG THE HAZARD
-
VULNERABILITY
-
RISK CONTINUUM
 ................................................................................................. 77
 
A
PPROACH 
4:
 
D
EALING WITH CLIMATE CHANGE ADAPTATION MAPPING
:
 
I
DENTIFYING THE INSTITUTIONS
,
 
POLICIES AND MECHANISMS ALREADY IN PLACE FOR REDUCING DISASTER RISK
 ........................................ 80
 
A
PPROACH 
5:
 
P
LAN AN INTEGRATED PROGRAM TO TACKLE BOTH CLIMATE CHANGE ADAPTATION AND RISK 
REDUCTION
 .............................................................................................................................. 80
 
A
PPROACH 
6:
 
C
OMMUNITY
-
BASED CLIMATE CHANGE ADAPTATION MODEL
:
 
I
NSTITUTIONALIZE THROUGH 
LOCAL GOVERNMENT
 ................................................................................................................. 81
 
Case 41: Setu/NGO networks, Gujarat: Link between government and 
community---------------------------------------------------------------------------------------------- 81
 
A
PPROACH 
7:
 
P
OST
-
DISASTER SURGE CAPACITY MANAGEMENT
:
 
S
TRENGTHENING EVERYDAY 
LIFESTYLE 
ISSUES
 OF KEY PERSONS TO LEVERAGE SURGE CAPACITY DURING DISASTERS
 .......................................... 82
 
Case 42: Twinning for shared resources, China 2010 --------------------------------------- 83
 
ANNEXES ........................................................................................................................ 85
 
A
NNEX 
1:
 
T
OOLS
 ...................................................................................................................... 85
 
A
NNEX 
2:
  
S
ELECTED 
R
EFERENCES
 ................................................................................................ 90
 
A
NNEX 
3:
  
G
LOSSARY OF CLIMATE
-
RESILIENT RECOVERY TERMINOLOGY
 ............................................... 96
 
A
NNEX 
4:
  
A
CKNOWLEDGEMENTS
 .............................................................................................. 103
 
 
Table of Boxes 
Box 1: Diarrheal Illness .........................................................................................................69
 
Box 2: Good Recovery Planning ............................................................................................75
 
Box 3: A continuum of adaptation activities: From development to climate change ..........78
 
Box 4: Participatory Tools to Support Adaptation ................................................................86
 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Introduction | iv  
Introduction 
Purpose 
There is currently an abundance of documents, plans and policies that address 
common issues faced in the mitigation, preparedness and relief phases of natural 
disaster management.  Yet for disaster recovery planners and policy makers, there is 
no cohesive documented body of knowledge.  It is conceded that preventive 
measures are vital to reducing the more costly efforts of responding to disasters.  
Nevertheless, in the post disaster situation, the availability of knowledge products 
reflecting the practices and lessons learned is critical for effective and sustainable 
recovery.  Unquestionably, a wealth of experience and expertise exists within 
governments and organizations; however the majority of this knowledge is never 
documented, compiled, nor shared.  Filling this knowledge gap is a key objective of 
the International Recovery Platform and the Guidance Notes on Recovery: Climate 
Change, along with its companion booklets, are an initial attempt to begin building a 
knowledge base on disaster recovery.  IRP hopes that this collection of the successes 
and failures of past experiences in disaster recovery will serve to inform the planning 
and implementation of future recovery initiatives. 
Audience 
The Guidance Notes on Recovery: Climate Change is intended for use by 
policymakers, planners, and implementers of local, regional and national government 
bodies and all other organizations interested or engaged in facilitating a more 
relevant, sustainable, and risk-reducing recovery process.  
Content 
The Guidance Notes on Recovery: Climate Change draws from documented 
experiences of past and present recovery efforts, collected through a desk review and 
consultations with relevant experts.  The collected materials are presented in the 
form of cases, loosely organized under several key issues and approaches.  The 
document provides analysis of many of the cases, highlighting key lessons and noting 
points of caution and clarification.  The case study format has been chosen in order to 
provide a richer description of recovery approaches, thus permitting the reader to 
draw other lessons or conclusions relative to a particular context. 
The document organizes the material loosely around the following issues: 
1. Climate resilient livelihoods 
2. Climate resilient infrastructure 
3. Stronger institutions for climate resilient recovery 
4. Community based approaches for climate resilience 
5. Health and climate change    
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Introduction | v  
Implementing adaptation plans and strategies is a vital next step in recovery 
programs, but is not an easy task for the decision maker. It is difficult for a manager 
responsible for post disaster recovery to understand how to integrate climate change 
predictions into the recovery planning. Where does the process start? The 
Implementation Guide in Chapter 7 attempts to provide some tools which can 
facilitate these decisions.  
Definitions as used in the document 
Climate change: Refers to a change in the state of the climate that can be identified 
(e.g., by using statistical tests) by changes in the mean and/or the variability of its 
properties, and that persists for an extended period, typically decades or longer. 
(IPCC 2007) 
Note that the definition of climate change used in the United Nations Framework 
Convention on Climate Change is more restricted, as it includes only those changes 
which are attributable directly or indirectly to human activity. (UNISDR, 2004) 
Adaptation:   refers to adjustments in ecological, social, or economic systems in 
response to actual or expected climatic stimuli and their effects or impacts. It refers 
to changes in processes, practices, and structures to moderate potential damages or 
to benefit from opportunities associated with climate change. (IPCC TAR, 2001; 
Compiled by Dr. Barry Smith- Chapter 18, page number 879). 
It is recognized that while certain activities or projects presented in the Guidance 
Notes have met with success in a given context, there is no guarantee that the same 
activity will generate similar results across all contexts.  Cultural norms, 
socioeconomic contexts, and myriad other factors will influence the process and 
outcome of any planned activity.  Therefore, the following case studies are not 
intended as prescriptive solutions to be applied, but rather as experiences to inspire, 
to generate contextually relevant ideas, and where appropriate, to adapt and apply. 
 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E  
Why Consider Climate Change in Recovery? | 1  
 
 
Why Consider 
Climate Change in 
Recovery?  
 
The climate is changing. This is no longer an issue to be debated. Climate change is a 
global problem, but it affects people in different locations differently. In spite of 
mitigation efforts, certain levels of climate change are inevitable due to the 
greenhouse gases that have already been emitted. Climate change is a key causative 
factor in increased heat waves, floods, droughts, intense tropical cyclones, and higher 
sea levels. Susceptibility to these hazards is also increasing due to continuing poverty 
and social vulnerability, poorly planned urbanization, environmental degradation, 
and population growth. These impacts will fall disproportionately on developing 
countries, and particularly the poorest of those. Climate change adaptation is 
therefore not an option but a necessity, and even more so in post-disaster recovery 
programs. 
Adaptation to climate change is already taking place, but on a limited basis. In spite of 
the adverse impacts of climate change, people have adopted a variety of successful 
adaptive and mitigation strategies which are worth sharing. For example, 
communities have long adapted to the impacts of climate by modifying existing 
practices, employing traditional practices that include crop diversification, changing 
the period or duration of fishing and hunting seasons, raising awareness and 
education of relevant issues, developing social networks, installing irrigation and 
water management systems, promoting disaster risk management, and purchasing 
insurance. Thus, we need to considerably alter the way we approach future recovery 
programs and find ways to mainstream climate change adaptation. 
Climate change adaptation and disaster risk reduction efforts share a common 
characteristic: they are not sectors in and of themselves, but must be incorporated in 
the post-disaster recovery phase into the policies of other sectors, such as agriculture, 
water resources, health, land use, the environment, finance, and planning. There are 
also linkages with other policies, most notably poverty eradication, health, education, 
and planning for sustainable development. In most of the past recovery initiatives, 
the above-mentioned policy fields were pursued largely in isolation from one another. 
However, many countries are seeing the shortcomings of such a vertical approach, 
and are now looking for ways to incorporate climate change adaptation and disaster 
risk reduction into their development planning. However, it is local governments that 
are really taking the initiative to deal with the two issues in a coherent way. 
Chapter 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Why Consider Climate Change in Recovery? | 2  
Climate change and adaptation 
In recent years, the world has experienced many disastrous climatic events. There is a 
great deal of documentation highlighting very alarming findings on global warming. 
For example, the arctic region has recorded winter temperature increases of 3-4oC 
and severe reductions in sea-ice areas, and there has been widespread melting of 
glacial ice and snow caps, such as at the Himalayan glacial retreat at Gangotri in India 
and Nepal. There has been an increase in global average temperatures as well as 
cases of extreme temperatures, as exemplified by heat waves in France and Spain. 
There is evidence of an increase in intense tropical cyclone activity in the North 
Atlantic, and precipitation has increased considerably in central Asia, northern Europe, 
and the eastern parts of North and South America. Sea levels are rising in Bangladesh, 
the Maldives, and Kiribati, while rainfall has declined in the Sahel region of Africa, the 
Mediterranean, southern Africa, and parts of southern Asia (IPCC, 2007).  
If the current trends in climate change continue, there is every possibility that 
temperature extremes, heat waves, droughts and heavy precipitation events will 
occur more frequently. Globally, it is the poor who tend to be more dependent on 
climate-sensitive resources for their livelihoods. Natural resources and the 
environment are being impacted negatively (degraded) by climate change. 
Vulnerability to future disasters will be determined by both climate change and 
poverty factors, as well as the ability of people to take action to minimize the 
negative impacts and maximize any benefits from such changes. For example, the 
poorest of the poor people in India, Bangladesh, Pakistan, and many other Asian 
countries are already forced to stay in the most disaster-prone areas, such as flood 
plains, low-lying and unprotected coastal areas, and eroded hillsides. Even modest 
changes in climatic hazards will quickly push households beyond their ability to 
flexibly adapt and cope with the situation.  
Climate change must be considered in long-term development planning because in 
many contexts, current activities may irreversibly constrain future adaptation to the 
impacts of climate change. Consider, for example, the destruction of coastal 
mangroves or the development of human settlements in CRZ areas that are likely to 
be particularly exposed to climate change. It is important to consider near-term 
policies in such instances, in addition to the long-term implications of climate change. 
Societies have a long record of managing the impacts of climate-influenced or 
weather-related events. It is relatively difficult for individuals or communities to 
mitigate climate change, but it is easier for them to adapt to its effects locally as the 
impacts become more important and more urgent. However, regardless of the scale 
of mitigation efforts that are undertaken over the next two to three decades, 
additional adaptations will have to be made to reduce the adverse impacts of 
projected climate change and variability. Adaptations can reduce vulnerability, 
especially when they are embedded in broader policy initiatives during post-disaster 
recovery and in development programs. The integration of adaptation processes may 
be factored into the program and projects of the country program cycle of the 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Why Consider Climate Change in Recovery? | 3  
UN/bilateral donor agencies, or the five-year planning processes of national 
governments, or it may start with the initiation of post-disaster recovery needs 
assessments, conducted as part of a recovery program. International donors and 
national governments should ensure that climate-friendly measures form a core part 
of any recovery planning effort. For example, when bridges and highways are rebuilt 
after a disaster, or when energy systems and services in coastal areas are being 
restored after a tropical cyclone, they should be designed and built through a 
partnership that includes climate experts and the development community (OECD, 
2009). 
Local level experience in adaptation and recovery 
Adaptation refers to adjustments in ecological, social, or economic systems in 
response to actual or expected climatic upheavals and their effects or impacts. It 
refers to changes in processes, practices, and structures adopted to moderate 
potential damage or to maximize benefits from opportunities associated with climate 
change. For example, quantitative information on global warming at the local level is 
mostly unavailable, but is very important for convincing individual households to 
adapt any new techniques or processes in making their planning decisions. This 
demands an approach to adaptation that manages uncertainties and fosters adaptive 
capacity. Adaptation is therefore not a choice between reducing general vulnerability 
and preparing for specific hazards, such as floods. Rather, adaptation requires both, 
in an ongoing process of change whereby people can make informed decisions about 
their lives and livelihoods in a changing climate (Pettengell, 2010). 
Adaptations vary according to the system in which they occur, who undertakes them, 
the climatic stimuli that prompts them, and their timing, functions, forms, and effects. 
Adaptation to climate change has the potential to substantially reduce many of the 
adverse impacts associated with it and to enhance the beneficial impacts. A practical 
means of coping with changes and uncertainties in the climate, including variability 
and extremes, is cultivating the ability to adapt. Enhancing adaptive capacity is 
necessary for reducing vulnerability and increasing resilience to the adverse impacts 
of climate change. 
Recovery impacts are best observed and understood at the local level. Looking at 
outcomes at the local level allows disaster managers and practitioners to understand 
the actual impacts of recovery decisions made at higher levels, allowing them to see 
how recovery policies, programs, and projects are implemented on the ground and 
what they actually deliver to people. Are individuals and households able to 
strengthen their livelihoods, improve their quality of life, and reduce their 
vulnerability to future climate change shocks and stresses? 
Understanding local contexts and engaging local actors during recovery  
Global climate change is translated into localized phenomena in response to local 
natural features and other environmental, economic, and socio-political factors. For 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Why Consider Climate Change in Recovery? | 4  
example, an increase in global mean temperature manifests locally as hotter days, 
more intense storms, less rainfall, or changes in the onset date of monsoon seasons 
and the length of growing seasons. These climatic changes in turn affect local 
livelihood activities, economic enterprises, health risks, and other factors. 
Vulnerability and climate change adaptive capacity are context-specific; thus, they are 
realized locally. Anticipated or actual climate change impacts shape adaptation 
decision-making and actions. Individual and household decisions about livelihood 
strategies and investments (e.g., crop selection, equipment purchases, skills training, 
and contingency planning) represent real-life demonstrations of adaptation. 
Challenges to recovery planning 
In many developing countries, communities are regularly exposed to tropical cyclones, 
storm surges, floods, droughts, heat waves, and other non-climatic disasters like 
earthquakes, landslides, and tsunamis. In coastal regions and island countries with 
long monsoon-affected coastlines and a number of major river deltas, the effects of 
climate change and sea level rise, combined with increasing coastal development and 
limited land use planning practices, increase these communities’ disaster risks and 
their capacity to adapt to climate change. However, once a disaster is declared, a 
relatively short period of time exists in which to plan and initiate recovery operations. 
The task is huge but the operation window is narrow. This period is a dynamic, urgent, 
under-resourced time when critical decisions concerning complex issues with long-
term consequences must be made. Delays in recovery programming can compound 
the damaging impacts of a disaster, such as when livelihood assets must be sold to 
meet basic survival needs.  
The other ongoing challenge is that concerns regarding poverty alleviation and 
national food security will continue to dominate development agendas for the 
foreseeable future. Indeed, food security crises that are partially induced by climate 
change will reinforce the need for immediate action for reducing poverty. The link 
between poverty and hunger in a changed climate scenario can be expected to 
become a major driving force in decision-making. A failure to adapt climate change 
priorities to the sustainable recovery agenda for livelihoods and food security may 
further aggravate the considerable lack of understanding that exists in developing 
countries for the climate change agenda. 
Climate-Resilient Recovery (CRR)
 
The climate is a resource in itself, and it affects the productivity of other critical 
resources, such as crops and livestock, forests, fisheries, and water resources. Natural 
fluctuations in the climate, such as those related to the El Niño and/or La Nina 
phenomena, may cause widespread disruptions in society’s ability to exploit 
resources, and even to survive. In addition to natural climate variability, long-term 
climate trends and climate change are already having a discernible impact on 
development. A clear example is the close link between rising temperatures in the 
Himalayas and the incidence of glacier retreat and increased risk of potentially 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Why Consider Climate Change in Recovery? | 5  
catastrophic glacial lake outburst flooding. A diverse range of development activities, 
from the design of hydropower facilities to rural development and settlement policies, 
will need to adapt to such impacts. 
Large-scale post-disaster recovery choices in habitat and infrastructure also have a 
significant impact on local and overall climate patterns. Over-construction contributes 
to the formation of urban heat islands; deforestation and changes in land use can 
influence regional temperature; and increases in greenhouse gas concentrations and 
rainfall patterns as a result of industrial activity are responsible for large-scale climate 
change. 
Though the impacts of climate change are not yet equally obvious everywhere, future 
projections and scenarios of the future impacts can in many cases justify ensuring 
that adaptation responses are built into planning. This is the case because (1) it can 
be more cost effective to implement adaptation measures early, particularly for long-
lived infrastructure, and (2) present development actions may irreversibly affect 
future adaptation to the impacts of climate change. Examples include the destruction 
of coastal mangroves and the building of human settlements in coastal areas that are 
likely to be particularly exposed to climate change.  
Climate-resilient recovery framework 
Basic post-disaster recovery strategies aim to meet the goal of ‘build back better’ 
through the recovery process. This refers to the opportunity to improve institutions, 
infrastructure, and quality of life rather than merely restoring them to pre-disaster 
conditions.  The primary objective of “build back better” is to reduce pre-existing 
vulnerabilities.  
For the purposes of achieving recovery while considering climate change adaptation, 
‘build back better’ can be understood to mean: 
x  Enhancing the resilience of communities to future climatic change events,  
x  Creating a stronger infrastructure,  
x  Strengthening institutions against the eventualities of climate change, and 
x  Enabling sustainable recovery. 
NOTE:
 Typically, recovery initiatives to address or to respond to climate 
change have been embedded in broader policy initiatives related to such topics 
as livelihood diversification, biodiversity conservation, the environment, and 
disaster risk management. Therefore, many of the observations and 
interpretations presented in these cases might reflect an interaction between 
climate change and other factors, rather than being the result of climate change 
alone. An important criterion for the inclusion of cases was that any observations 
or responses included in recovery initiatives or development programs had to be 
adopted as deliberate responses to climate triggers.  
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Why Consider Climate Change in Recovery? | 6  
Weather and climate related disasters account for over two-thirds of all disaster 
events and their significance is likely to increase with global warming. A majority of 
climate change impacts will happen through intense climate variability, with changes 
such as heavy rainfall, reduced precipitation, more frequent cyclonic depressions or 
shifting of snow lines with direct implication for disaster risks. This may also add to 
the degradation of natural resources, damage to infrastructure and food shortages 
upon which livelihoods are based. All of these impact the longer-term resilience of 
communities against disasters.  
Both disaster risk reduction and climate change adaptation initiatives aim at reducing 
the impacts of shocks by anticipating future risks and addressing vulnerabilities. 
However, to make recovery intervention successful in handling changing risks due to 
climate change DRR initiatives should ensure that actions do not increase 
vulnerability to climate change in the medium to long-term, for example rebuilding in 
coastal areas which will be impacted by sea level rise in the future. Thus, in 
development planning, climate change risks will need to be considered systematically 
along with disaster risk reduction in order to strengthen adaptation measures. 
  
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E  
Enhancing Climate Resilient Livelihoods in Recovery | 7  
 
Enhancing Climate-
Resilient Livelihoods 
in Recovery 
Approach 1: Post-disaster recovery needs assessment & targeting 
for livelihood recovery 
Livelihood recovery of the poor is a complex issue, and resources are shrinking while 
the demand for recovery support is increasing year after year. Depending on the 
resources of time and money available to an agency, the best approach is often to 
formulate targeting strategies. Many of the post-flood recovery strategies that follow 
have been understood for some time. 
In recovery, the targeting strategy adopted to reach vulnerable people effectively 
needs to be flexible enough to adapt to different phases and interventions. Targeting 
can be by area (i.e., geographic targeting), or by group (i.e., administrative targeting). 
It can mean letting an individual or family decide for themselves if they want to 
participate (self-targeting), or letting the community decide who will benefit from an 
intervention and who will not (community-based targeting). Climate-change-induced 
disasters like droughts are better identified using geographical coverage. Future 
climate change scenarios could strengthen geographic targeting capabilities. Thus, 
geographic targeting during long-term recovery correctly identifies the largest 
number of needy households. However, it does not identify the most food/nutrient 
unsecured households as it does not represent individual villages/communities and 
households. The best approach is often a combination of targeting strategies, 
depending on the information available and on an agency’s resources of time and 
money (WFP, 2006b; WB/IFPRI, 2002). 
NGO assessments, including independent assessments, were generally positive with 
regard to the impact of the 1998 Bangladesh post-flood recovery program, especially 
for those whose work included the provision of seeds, livestock and housing. The 
overall success of NGOs in the recovery phase (Case 1) can be attributed to long-term 
involvement in the affected areas, which meant that local organizations were able to 
accurately identify the most vulnerable people. For example, a distressed persons list 
was developed in consultation with village committees, beneficiary selection was 
monitored by a field team, and attempts to corrupt the process were for the most 
part contained by the strong leadership of the partners and the transparency of the 
objectives and standards of their programs. Coordination and community 
Chapter 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 8  
participation were considered effective, and attention to gender equality was 
reasonable (Russell, 2000).  
Case 1: Flexibility in flood recovery programs: Key to BRAC’s success in Bangladesh  
The Bangladesh Rural Advancement Committee (BRAC), the largest NGO in 
Bangladesh, provides some 3 million poor individuals, mainly women, with loans for 
productive purposes. A number of evaluations over the last five years have shown that 
BRAC is effective in development work in terms of reducing poverty in a sustainable 
fashion. BRAC’s response to the floods was funded by seven donors and continued 
until July 1999, covering 55 districts, with a total cost for the recovery phase of some 
US$680,000. It assisted about 850,000 flood-affected women from landless and 
marginal farming households. Since most development activities were suspended, 
BRAC diverted its staff to recovery activities. The strategy used by BRAC was to assist 
targeted people so that they could quickly get back to their own homes and/or return 
to their regular income-generating activities. The main sectors that BRAC worked in 
were agriculture, particularly the provision of seeds, social forestry, and sericulture, 
poultry, fisheries, sanitation, and shelter. Most of these activities fed into longer-term 
development programs that BRAC was already running. 
Some of the constraints faced by BRAC point to areas which require further attention 
as part of an overall response. There was a lack of local varieties of rice, mustard seed, 
and organic fertilizer. The price of seeds went up in the post-flood period. Seedlings 
were not available in the local markets, and had to be purchased from government and 
local agencies that import seeds. 
BRAC is praised in external monitoring reports for providing recovery aid in kind, not 
cash. Thus recipients could immediately plant the grains and vegetables, rather than 
losing time trying to obtain these inputs in the marketplace. 
One of the main lessons from this good practice example is that NGOs with an ongoing 
development program are most likely to be effective in the recovery phase at targeting 
poorer households and supporting their livelihoods (Russell, 2000). 
Sources: BRAC (2000) Flood Relief and Rehabilitation Project. July 1998-July 1999. Phase ending report. 
Dhaka: BRAC, mimeo. 
Lessons 
x  The overall recovery success of NGOs can be attributed to their long-term 
involvement in the affected areas. This means that local organizations were 
able to accurately identify the most vulnerable people and their needs, and to 
redesign the intervention as the recovery process was unfolding in ways that 
would reduce future  
x  In the post-flood recovery stage, up-scaling pre-existing development 
programs of NGOs and development agencies provide greater opportunities 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 9  
Recovery Needs Assessment 
When the emergency is largely over and some stability has returned to the lives of 
the affected population, it is worth taking the time to carry out an additional needs 
assessment. In order to prioritize communities’ and individuals’ needs under a 
climate change scenario, a detailed needs assessment (possibly a second one 
conducted after the initial needs assessment for emergency intervention) with 
reference to recovery with adaptation options should be carried out at the start of 
the recovery phase. It could also be used as a means of attempting to understand 
ways of more effectively building climate-resilient livelihoods. At this point, an RNA 
conducted in consultation with the affected population could considerably improve 
the recovery project, particularly in terms of promoting climate-resilient adaptation 
(Beck, 1994). This needs assessment initiative will result in the formulation of a long-
term recovery program in each sector and geographic area, identifying opportunities 
from both climate change adaptation and risk reduction perspectives. It will also help 
to inform and guide the decision-making process within the donor community with 
regard to commitments and pledges for recovery, covering the initial and transitional 
humanitarian phases, through to contributions channeled through reconstruction 
conferences, consultative groups, and other resource mobilization mechanisms. 
Case 2:  Government Ownership in Needs Assessment: Key to the Recovery Program in Mozambique 
 Mozambique offers an example of a post-conflict country faced with major natural 
disasters – drought, famine, floods (Just the drought of 1908-85 caused more than 
100,000 deaths). It also offers an example of recovery in an extremely poor and 
primarily subsistence livelihood population, but in a country favored by donors and 
receiving substantial amounts of both relief and recovery assistance. 
Recovery was seen by the government as an opportunity to move parts of the country 
forward, acting as an engine for development. The World Bank and the government 
rapidly conducted an overall damage and needs assessment after the 2000 floods in 
order to move the agenda swiftly away from emergency relief to recovery. Recovery 
should not merely restore the previous level of development but promote activities 
that will lead to reductions in the vulnerability of the population and infrastructure to 
future disasters. Several ministries and agencies at the national and local levels 
undertook more detailed assessments for program planning purposes based on a 
feeling that beneficiary participation in assessment and program design was not given 
a high priority. The appeal document and CD-ROM produced for that meeting held at 
the International Reconstruction Conference, Rome on May 3-4, 2000 had strong 
government ownership, with additional support provided by UNDP and the World 
Bank. In the appeal, the government stressed its commitment to maintain 
macroeconomic stability. Recovery expenditures were included in an additional 
government budget, which was separate from the main budget, to avoid imbalances 
to mainstream risk reduction into development.  
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 10  
with ongoing programs. The government aimed to ensure that recovery income and 
expenditures would have a neutral impact  on the national budget. The negative 
economic impacts of the floods were offset by the positive response to the donors’ 
conference. By 2001 the country had returned to high annual levels of GDP growth, 
and the economic impact of the 2000 and 2001 disasters was not seen as a major 
economic factor in the medium-term (Wiles et al., 2005). It seems to work favourably 
for generating donors fund for Mozambique flood recovery. 
Mozambique’s recovery from the 2000 floods generally appears to have been effective 
and well handled. Needs assessments related to the water resources sector sometimes 
go beyond current flood recovery and include considerations regarding the 
vulnerability  of water resources to climate change. The 2000 floods in Mozambique 
demonstrated clearly that it is possible to make an impact and carry out extensive 
recovery activities when the disaster is high profile and large amounts of money are 
donated to the affected populations. The funding available through the recovery 
programs made it possible not only to repair or replace existing infrastructure, usually 
to higher standards, but also to build new facilities where none existed before. A very 
positive feature of Mozambique’s recovery work has been the rehabilitation and 
reconstruction of damaged infrastructure. However, climate events in Mozambique 
such as those that occurred in 2000 and  2007, undermined years of development 
effort and the adverse impact of future climate change may further slow 
Mozambique’s development. At the national level, there is a need to further integrate 
climate resilient adaptation measures into recovery needs assessment efforts and the 
implementation of future recovery interventions. 
Sources: World Bank (2005). 
Approach 2: Community-based needs assessment and targeting 
(CBT) 
Need assessments at the community level should inform targeting criteria and, in 
turn, suitable program activities. In community-based targeting (CBT), consulting 
communities in a slow-onset crisis can provide valuable inside information, resources, 
and coping strategies for sharing available resources and identifying interventions 
that build on community priorities and capacities during recovery program 
implementation. At the very least, agencies must be aware of existing community-
based organizations and self-help mechanisms. Interventions must strive to 
strengthen these, as in the case of Seed Banks set up by SOS Sahel during the 1997 
drought emergency in Ethiopia, which were still in operation after the drought of 
2004-05 (SOS Sahel, 2006). SOS Sahel facilitated traditional funeral associations to 
design, implement, and evaluate the project, increasing local ownership. CBT can 
reduce agency costs associated with administrative targeting. Decentralized 
accountability is more likely when the community has some role and responsibility in 
monitoring and evaluating the recovery program.  
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 11  
Case 3: Community-based targeting in drought: Indonesia 
In Indonesia after the 1999 drought related to El Niño, WFP worked with local NGOs to 
implement a formal survey and CBT to target urban slum dwellers affected by high 
food prices and having difficulties accessing enough food. CBT worked best in relatively 
homogeneous slums, while unregistered slum dwellers risked being overlooked. Living 
nearby didn’t mean they were necessarily considered part of the ‘community’ by 
others in the neighborhood (WFP, 2000). 
CBT works best: 
x  In stable, non-conflict situations; where communities are cohesive and well 
defined, 
x  Where relatively large wealth differentials exist within communities, 
x  Where not all wealth groups are equally affected by food insecurity, 
x  When targeting a fairly large proportion of the community, 
x  When agencies can identify reliable community representatives accountable 
for targeting the most vulnerable, and 
x  When agencies prioritize monitoring and capacity building. 
Previous experiences demonstrate that biases can silently influence targeting for a 
variety of reasons. For example, it is difficult to select the beneficiaries of recovery 
assistance that is delivered by NGOs particularly when those NGOs have previously 
carried out development work in the affected communities. In addition, when the 
government and military play a strong role in response and reconstruction activities, 
effective and impartial targeting may be a problem where institutionalized 
discrimination is embedded in rehabilitation and reconstruction efforts (Cosgrave and 
Herson, 2008). The problematic targeting during the Pakistan response to the 2005 
earthquake led to discrimination against households headed by women, and the 
needs of Afghan refugees who lacked Pakistani identity cards were largely overlooked 
(Cosgrave and Herson, 2008). This demonstrates the need for gender-sensitive 
targeting. During the Bangladesh flood response of 1998 some agencies offset the 
bias of targeting to beneficiaries who were already part of their regular programming 
by delivering flood relief by area, and selecting beneficiaries within those areas with 
the assistance of village leaders, or local relief committees (Young and Associates, 
2000). Using local knowledge to identify the poor can be a rapid and effective 
method of targeting. In Orissa, limited knowledge of the local context among only a 
few aid agencies, and limited knowledge of the wider social economic profile of the 
poor, led to inaccurate targeting of people’s particular needs. Some of the most 
vulnerable people did not appear in the relief and recovery databases so they were 
not targeted (IMM, 2001). However, this approach proved to be especially useful 
during the response to Hurricane Mitch (Espacios consultores SA, 2000). 
 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 12  
Regardless of the targeting strategy used, more successful targeting outcomes are 
associated with the following: 
x  People who benefit from a project can talk from first-hand experience about 
project outcomes and impacts. At the same time, they may have a vested 
interest in seeing the project continue and thus may be less likely to criticize 
the project or discuss problems. Developing monitoring systems that seek 
information from less biased sources can be a way around this. For example, 
SCUK in Zimbabwe involved children in the monitoring of the use of 
distributed relief (SCUK, 2005b). 
x  A multi-agency structure and inter-agency dialogue, where government and 
non-government organizations are included in making targeting decisions. 
x  An appeal process communicated clearly to communities: who to appeal to, 
how appeals should be carried out, and how appellants can expect to be 
treated (DFID, 2006b). Women’s access to the appeal process is very 
important, as women are often under social pressure not to complain. 
Appeals need to be documented in order to track individual cases and to 
monitor whether certain groups are systematically excluded or favored. 
x  Adjustments to the targeting process to make it more responsive to local 
realities. Adaptation of guidelines should be encouraged (not penalized), and 
well documented to promote transparency (DFID, 2006b; Oxfam, 2002). 
x  Effective monitoring of the outcomes of targeting after distribution. 
For further information, please consult: 
www.savethechildren.org.uk/scuk_cache/scuk/cache/cmsattach/2008_CMTD_for_w
eb.pdf
 
www.ifpri.org/pubs/cp/targettransfers.htm
www.alnap.org/publications/gs_handbook/index.htm  
Approach 3: Agricultural livelihood coping strategies  
Reviving the agricultural economy is a crucial aspect of livelihood recovery.
 It
 is 
therefore expected that a significant element of livelihood recovery will focus on 
post-disaster agricultural rehabilitation and recovery. 
Various desk review have shown that the majority of those who are affected by 
climate change are poor farmers and fishers in predominantly agricultural societies, 
who need recovery support after cyclones, typhoons, floods, drought, and coastal 
flooding. In many developing countries, there is a lack of consistent understanding of 
the issue of livelihood recovery after floods. During post-disaster livelihood recovery, 
poorer households usually take such steps as cutting back on non-food expenditures 
(this may last for a year after the peak of the floods), selling their assets, including 
small livestock, and borrowing to purchase food and cover other expenses. This is of 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 13  
particular importance due to the insufficient availability of credit. Poorer households 
are forced to take exploitive loans from moneylenders or wealthier neighbours. 
Another constraint is the general lack of information disseminated to the community 
on the recovery as opposed to that disseminated during the emergency/relief phase. 
Additionally, there is very limited discussion of any wider potential impacts of the 
recovery of the infrastructure, for example the likely socio-economic benefits, gender 
equality, or climate change and environmental impacts. Notably, more consideration 
is needed today in the planning of infrastructure in the recovery phase to ensure 
suitable attention to the issues mentioned above. 
There are three major challenges in livelihood recovery that climate change brings to 
bear on rural communities: 
x  undermined sustainability of current livelihood strategies; 
x  increased pressure on already depleted natural resource bases; and  
x  increased disaster risk from climate hazards. 
Effective adaptation must therefore bring sustainable livelihoods, natural resource 
management, and disaster risk reduction approaches to secure and enhance assets 
within the scope of climate change analysis. Agriculture is also a major economic, 
social, and cultural activity. Importantly, agriculture in its many different forms and 
locations remains highly sensitive to climate variations, the dominant source of the 
overall inter-annual variability of production in many regions, and continuing sources 
of disruption to ecosystem services. For example, the El Niño Southern Oscillation 
phenomenon, with its associated cycles of droughts and flooding events, explains the 
regional yield variation in various crops (Ferries, 1999; Oxfam, 2009a). 
 Local communities are large storehouses of knowledge and experience on coping 
with climatic variability and extreme weather events. They have always aimed to 
adapt to variations in their climate. To do that, they have made arrangements based 
on their resources and knowledge, which they have accumulated through their past 
experiences with the climate and recent weather patterns. This includes times when 
they have also been forced to react to and recover from extreme events, such as 
floods, droughts, and hurricanes. Thus, traditional knowledge can help provide 
efficient, appropriate, and time-tested ways of devising and enabling adaptation to 
climate change in communities that are feeling the effects of climate changes due to 
global warming. Several examples of local coping strategies are mentioned in recent 
publications (UNFCCC 2006b, 2006c, 2007a, 2007b). For example, farmers on Timor 
Island have developed their own varieties of major staple crops to adapt to erratic 
rainfall and cyclones and to ensure food security. 
In Africa, Asia, South America, and Australia rural farmers have been practicing a 
range of agricultural techniques as coping strategies and tactics to enable sustainable 
food production and food security, and to deal with extreme events. These include 
intercropping and crop diversification, use of home gardens, diversification of herds 
and incomes (e.g., the introduction of sheep in place of goats in Bara province in 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 14  
Western Sudan), pruning and fertilizing to double tree densities and prevent soil 
erosion in semi-arid areas (e.g., Senegal, Burkina Faso, Madagascar, and Zimbabwe), 
manipulation of land use leading to land use conversion (e.g., a shift from livestock 
farming to game farming in Southern Africa), and water conservation techniques to 
cope with arid conditions (such as the Zaï technique in Burkina Faso, khadin in 
Rajasthan in India, and tank irrigation in southern India). African farmers dig pits in 
the soil to collect organic material carried by the wind during the dry season. At the 
start of the rainy season, farmers add organic matter from animals, which attracts 
termite activity resulting in termite tunnels that can collect rain deep enough so that 
it does not evaporate, thus increasing soil fertility. In many locations tribal and 
individual movements and migration are also identified as adaptation options. 
Case 4: Rice in the Weeping Plain: Climate Change Adaptation in Thailand 
Yasothorn, one of the 10 poorest provinces of Thailand, is part of the  legendary 
‘Weeping Plain,’ named after its barren landscape. Almost 90% of people living in 
Yasothorn Province are farmers. Most farms in Yasothorn are rain-fed, with no 
irrigation facilities. Jasmine rice is light-sensitive and has to be grown during particular 
months of the year. When there is no rain, rice plants are left to wither in the scorching 
sun 
In 2007, farmers in Yasothorn Province, in northeast Thailand, experienced the longest 
dry spell during a rainy season in decades. The dry spell, lasting  from June until late 
August, reduced crop yields, lowering farmers’ income and reducing their food 
security. The Meteorological Department suggests that the dry spell that occurred in 
2007 is not a one-time phenomenon, but part of a gradual trend that has developed in 
the past decade, due to rising temperatures and changes in rainfall patterns caused by 
climate change. The reduction in the frequency of depressions was significant, because 
without them tropical storms and typhoons do not provide enough rain during the dry 
season. Rainfall records for Yasothorn in the last decade show that the rains are 
arriving later and later each year, from a few days late to many weeks. When seasons 
start late and rain does not fall, the impact on rice yields is significant. Combined with 
increases in temperature, this means that Thailand’s biggest production hub suffers 
greatly. Irregular weather in the form of hot and cold spells also causes pest attacks on 
rice crops and fungal disease, reducing the quantity and quality of the crops. In 2007, 
Earth Net Foundation (ENF), a partner of Oxfam, was working with farmers’ groups in 
Yasothorn on a pilot climate-change adaptation project for organic rice and on-farm 
water management systems. Compared with conventional chemical-based farming, 
organic farming is less dependent on off-farm inputs, requires less energy, and is more 
environmentally sound. In 2008, Yasothorn was hit by drought – the worst in 57 years. 
The drought, which began in June and continued until the end of August, made rice 
cultivation very difficult. The problem was exacerbated by rain during the harvesting 
months, which drowned many of the rice crops in the low-lying plains that had 
managed to survive the drought. 
Manoon Phupa, a farmer who joined the project, creatively designed his own windmill 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 15  
pump from old billboard cut-outs to drain and irrigate water from a new well that 
Oxfam helped to build. The new well, in addition to his existing pond, was used to flood 
his paddy fields during the prolonged dry spells. He also constructed dikes inside his 
paddy fields to drain water from the pond to supply the paddies. Not only has he 
learned how to grow rice with limited water, he has also diversified his food crops to 
include vegetables and fruit. Even though the droughts in 2008 were more severe than 
in previous years, Manoon’s water management system has helped him achieve higher 
yields of both jasmine rice and sticky rice for his household’s consumption, with a 
surplus for the market. During the drought in 2008, peasants used this efficient water 
management system, and were able to provide water for jasmine and sticky rice, which 
performed better. Manoon used a windmill-powered pump to supply the paddies with 
water during the drought period. Their on-farm water-supply system is simple, energy-
efficient, and convenient even for women and children to use. Despite the year’s harsh 
conditions, 89% of participating farmers were able to maintain an output of rice that 
was at least sufficient for their own household consumption, with some households 
producing a surplus to sell at market. Overall rice production fell by almost 16 percent, 
a stark contrast to the 40 percent decrease in production experienced by farms that 
did not take part in the project. 
The experiences from drought affected areas showed that at the same place drought 
events often occur with such frequency that people have no time to recover before 
another drought hits. Results from case studies show that systemic changes in resource 
allocation, such as targeted diversification of production systems, organic farming, and 
better natural resource utilization perform better than current intensive agricultural 
practices. In Yasothorn, intensive agricultural practices using chemical fertilizers led to 
losses of 50–90 percent in 2008. Experimentation results show that organic rice plants 
are physically healthier and stronger than non-organic plants, and organic fields are 
also more fertile and can retain more moisture compared to chemically fertilized fields. 
Hence, more consideration needs to given to organic-farming households, as they 
produce better yields than their chemical-intensive counterparts.  
There are many potential adaptation options available if marginal changes are made to 
existing agricultural systems, and these are often variations of existing climate risk 
management. We show that the implementation of these options is likely to have 
substantial benefits under moderate climate change for some cropping systems and 
that they can be potentially incorporated into recovery planning and implementation. 
However, there are limits to their effectiveness under more severe climate change 
scenarios, potential GHG mitigation, and longer term climate-resilient recovery. 
Source: http://www.oxfam.org.uk/resources/policy/climate_change/climate-change-case-study-
thailand.html. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 16  
Lessons 
x  Access to information is key. While the farmers were well aware that the 
weather was changing, they needed the external input about climate change 
to be able to make informed decisions about their future activities. 
x  These solutions can only be implemented in an enabling environment, which 
in this case involved NGO grants and technical support.  
x  Finally it can be concluded that national adaptation planning must therefore 
consider the processes that can provide the information, services, and 
enabling environment to communities living in poverty to adapt to climate 
change. 
Many agricultural interventions emphasizing various water usage and water 
conservation strategies including terracing, surface water and groundwater irrigation, 
and diversification in agriculture, are appropriate measures for dealing with drought. 
In Latin America, local coping strategies include a variety of agricultural practices, 
ecosystem protection measures, and methods to adapt to extreme events. Farmers 
in Peru have been using an ancient irrigation and drainage system known as ‘waru 
waru’, or raised field agriculture, which makes it possible to bring into production the 
low-lying, flood-prone, poorly drained lands found all over the Altiplano. The shallow 
canals provide moisture during droughts and drainage during the rainy season. When 
filled with water they also create a microclimate that acts as a buffer against night 
time frosts. The waru system provides farmers with greater harvest security and 
reduces the risks associated with frosts and drought. In Mexico, the Cajete Terrace 
agro-ecosystems have been in place for three thousand years in the hillside regions in 
Tlaxcala. In these rain-fed corn–bean–squash agro ecosystems, food is grown on 
steep erosion-prone slopes. Rainfall is concentrated between May and September 
and often occurs in sudden downpours. Sloping terraces feed excess water into tanks 
(cajetes). The water, which would otherwise not be absorbed into the soil, is collected 
inside the tanks and slowly percolates into the surrounding soil after the rain has 
ended. Eroded soils are also trapped inside the tanks, preventing soil loss down the 
slope. Nutrient rich soils from inside of the tanks are later gathered and distributed to 
the fields. 
In changing climate situations, successful agricultural recovery interventions in post-
disaster contexts (following cyclones, floods, and droughts) generally include the 
supply of specific varieties of seeds (see Case 1), which may differ depending on the 
response phase, available effective crop growing period, and the development of key 
saline embankments. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 17  
Case 5: Adaptive rice farming system in Thailand 
Rural communities and cultures in many countries have successfully developed by 
mastering the ability to adapt to climatic conditions. However, in the last few decades 
there has been dramatic growth in the human population. This has led to increased 
input costs, and is imposing unprecedented pressures on natural ecosystems and on 
existing agricultural production systems. In addition to this pressure, societies are 
expected to face changes in the climate, such as more floods and drought events, at 
an unprecedented rate. Given their very tenuous economic scenarios, farmers 
around the world have been struggling to maintain their incomes by continuously 
trying to increase yields in their production systems. But these higher producing 
systems have often become more vulnerable to climate variability and climate 
change. Agricultural production systems are in immediate need of effective adaptive 
strategies to overcome these expected. 
Some of the following case studies address crops, fisheries, and livestock separately, 
and have been conducted with the intent of identifying innovative management 
practices better able to cope with climate change and variability. Although these 
studies have proven very valuable in advancing the understanding of the existing 
interactions of climate with agriculture, efforts should be made to work toward large-
scale application at the farm level, integrating production activities. 
In Orissa, the large volumes of standing water in most areas after the 1999 super-
cyclone necessitated the use of particular local varieties of seeds with a longer 
maturation period of up to 180 days. Many communities expressed concerns about the 
damage of saline intrusion in some of the coastal villages and the need to restore key 
saline embankments to avoid additional water intrusion and further damage (UNDP, 
2002). Once again, good practices point to the need to consult with communities, 
especially regarding the varieties of seeds that are most suitable for the local context 
given the established local practices and changes in the soil environment as a result of 
the flood waters.  This  seems to have been overlooked during the cyclone and flood 
response in Mozambique (Wiles et al., 2005).  
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 18  
Case 6: Floating gardens: Adaptation to floods in Bangladesh 
First, a floating raft is built using water hyacinth, which is a type of hydro plant (plants 
which grow in water). The rafts vary in size, depending on the space available and the 
size of the family. They may be 15- 50m long, about 2m wide, and around 1m deep.  
Natural compost is added to the raft and allowed to decompose. The structure of the 
floating raft is strengthened with bamboo.  
Vegetables seeds are then planted. In the rainy season, cucumber, eggplant 
(aubergine), and different types of gourd vegetables (e.g., okra) are planted along with 
herbs (e.g., basil) and spices (e.g., turmeric). In the winter season, beans, tomatoes, 
cauliflower, cabbage, potatoes, radishes, carrots, and onions are grown, as are herbs 
and spices such as ginger, mustard, and chili.  
A fence can be put round the floating garden to protect the vegetables from rats, 
ducks, and other predators. Once the raft is built, it is tied to a post to keep it from 
floating away when the flood waters come. As the land floods, the raft will float up and 
the vegetables will be safe.  
Lessons 
x  Seedbeds can be prepared or arranged on floating platforms made of such 
plants as banana or bamboo plants. 
x  Seed containers can be kept hanging from the ceiling of the house and/or 
from the trees. Seeds may also be preserved in the houses of relatives who live 
on higher ground that is safe from flooding. 
Climate-resilient fisheries’ adaptations to floods 
Inland fisheries are threatened by changes in precipitation and water management. 
The frequency and intensity of extreme climate events is likely to have a major 
impact on future fishery production in both inland and marine systems. Reducing fish 
mortality in the majority of fisheries is the principal feasible means of reducing the 
impacts of climate change. As climate change and climate variability have occurred 
throughout history, natural systems, and the fisheries based on them, have 
developed a capacity to adapt that will help them mitigate the impact of future 
changes. Future sustainable fisheries depend on the effective management of fishing 
activity, which in turn requires an understanding of the effects of climate change on 
the productivity and distribution of exploited stocks. 
Floods and annual flooding are very common in many parts of Asia. However, recent 
experiences show that both the frequency and intensity of floods has increased, and 
every year many parts of those countries are devastated by floods and therefore 
suffer losses to their agricultural crops, livestock, and other assets. Several reports 
have shown that personal perceptions and scientific analysis both indicate that the 
seasonal cycles and rainfall patterns have changed across many parts of Bangladesh 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 19  
(FAO, 2006; UNDP, 2007). The global circulation model (GCM) results predict an 
average temperature increase in Bangladesh due to climate change of 1.0ºC by 2030 
and 1.4ºC by 2050. It also suggests that monsoon precipitation is likely to increase by 
approximately 7% by 2050, a situation that could cause increased flooding in the 
future.  
Each year hundreds and thousands of traditional ponds drift due to floods. This 
results in the loss of fish, which in turn results in financial losses for poor fish farmers. 
Floods further aggravate situations in many countries like Bangladesh, India, 
Indonesia, and the Philippines, especially in coastal deltas where flooding combined 
with rising sea levels are affecting the livelihoods of people in the inland fisheries 
sector. Since 1980 commercial shrimp farming has been developed on a large scale. 
Since much of the land has been enclosed by shrimp farmers in these areas, people 
have been forced to adopt innovative alternate technologies. Sometimes, they are 
assisted by the government under post-flood rehabilitation and recovery programs. 
However, that assistance is constrained by the initial investment and technologies 
availability to farming communities. When land is limited due to floods, people face a 
constant threat of hunger. Why not try and use flooded land as a resource? This is an 
opportunity to develop a long-term solution to the problem. Therefore, adaptations 
to the changing hydrodynamic phenomena should be further explored and 
implemented in order to avoid or reduce the devastating effects of floods. 
Cage aquaculture is a fish culture strategy that has been relatively recently adopted in 
such countries as Thailand, India, and Bangladesh. Fish are cultured in cages in open 
bodies of water such as rivers, canals and wetlands by individuals or communities 
(Case 7). Cage aquaculture gives local people access to common bodies of water. 
Cage aquaculture offers 
poor people the opportunity to make a living 
using 
household ponds and waterlogged areas for fish culture (McAndrew, 2002). A 
potential fish farmer can produce fish in an existing pond without destroying its sport 
fishing and without having to invest large amounts of capital for construction or 
equipment. This allows a potential farmer to try fish culture without unreasonable 
risks. The cages are made of metal nets and are sunk in a body of water. The cultured 
fish either feed on the nutrient properties of the water or are fed manually. 
Case 7: Community-Based Fishing Scheme in Gaibandha, Bangladesh 
In Bharar Daha, a village 8 km away from Gaibandha, the NGO Practical Action, is 
helping families who have been displaced by flooding and river erosion to rebuild their 
lives through a community-based fishing scheme. The scheme is benefiting 108 
families, all of whom have been forced off their land and are now living on the 
government-built  flood embankment. Before the scheme, the families relied on the 
income of men who would work as day laborers or rickshaw pullers. They would 
struggle to earn enough money during the annual floods when work is harder to find. 
Under the community-based fishing scheme, the community formed a committee to 
run the scheme, and established a joint bank account. Fishers were granted a lease to 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 20  
use the local government-owned pond for their fishing activities, and this was only 
granted because of this community-based approach. Practical Action then carried out 
training in fishing techniques to help families earn additional income throughout the 
year, and particularly during the annual floods. The women of the community were 
trained in ‘fish cage culture’: using cages which are one cubic meter in size to breed 
tilapia for eating and selling on the market.  
The advantages of cage aquaculture are:  
x  Many types of water resources can be used, including lakes, reservoirs, ponds, 
strip pits, streams, and rivers where fish otherwise could not be harvested; 
x  A relatively low initial investment , as all that is required is an existing body of 
water.   
x  It allows the use of public bodies of water for fish production and allows sport 
fishing ponds to be used for the culture of other species. 
Lessons 
x  As part of the preparedness as well as the recovery support measures adopted 
for fish culture, raise the height of the banks of ponds that are at risk of 
inundation by floodwaters to protect fish from escaping. If possible, attach 
nets securely to the surface of the banks or to tree branches to keep fish from 
escaping.  
x  Catch the fish prematurely and prepare for cage aquaculture.  
Fighting salinity through traditional practices 
Sri Lanka has experienced an increase in temperatures and relatively low rainfall for 
an extended period over the last 20 years, leading to a decrease in ground water 
levels. At the same time, an increased sea level has also caused sea water intrusion 
into coastal lagoons and estuary systems, causing the destruction and slow change of 
existing habitats. Salt water in Sri Lanka's coastal rice fields is a problem that is certain 
to get worse as sea levels rise.
 
Forgotten types of indigenous rice may offer a home-grown solution to the increasing 
soil salinity. There are around 2,000 traditional rice varieties in Sri Lanka. Many are 
very high in nutritional value and have medicinal properties, and most are resistant to 
extreme drought conditions, diseases, and pests. These varieties were traditionally 
grown using natural inputs such as organic manure, and no chemical fertilizers or 
pesticides were used. Farmers have worked on a number of trials on various rice 
varieties of traditional and modern rice which are saline-tolerant, temperature-
resistant, and pest-resistant to see if they could withstand salinity. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 21  
Case 8: A new lease on life in Hambantota with traditional salinity-resistant rice 
For rice farmers in Dehigahalanda, in the Hambantota district of southern Sri Lanka, 
increased salinity in their water-logged fields was a grave problem causing their yields 
to drop steeply. Some were getting less than half the expected yield. The farmers could 
not find a viable solution for the creeping salinity, which was aggravated by the 2004 
Indian Ocean Tsunami and a lack of fresh irrigation water, and feared that eventually 
their fields would be left barren. 
One such farmer was 40-year old S. Ranjith. Nearing desperation, his local farmers' 
organization tried to appeal to various government institutions about their plight, but 
with little success. Today Ranjith has managed to reverse his destiny. He is even 
producing seed paddy out of his one-and-a-half acre field. The secret of his success 
does not lie in complicated engineering feats or advanced science, but in long-
forgotten traditional rice varieties that have an age-old ability to resist high salinity in 
soil and water. 
Together with 16 other local farmers, Ranjith conducted trials using 10 different 
varieties of traditional rice through a program conducted by the National Federation of 
Traditional Seeds and Agri-Resources and supported by a leading NGO. For the first 
time, the farmers were given the choice of 'variety  selection' and asked to score the 
different rice types according to crop duration, plant height, grain quality, and yield. 
The four highest scoring of the ten varieties were then promoted through farmer 
organizations as hardy, saline tolerant and high quality rice that were well suited for 
coastal rice paddies. 
Ranjith has cultivated his field for the third time with traditional varieties, shunning the 
hybrids promoted by the country's agricultural departments. His inputs are low-organic 
manure and less chemical pest control. Although traditional rice does not produce the 
yields of hybrid varieties, his profits remain high. Traditional rice is purchased at a 
higher price by the Federation and there is high consumer demand today for these rare 
rice types. The application of organic fertilizer has begun to ease the soil salinity 
problem as well.  
"We were on the verge of abandoning our fields. The introduction of traditional rice 
has given a new lease on life to us and these fields," said Ranjith who is now a certified 
traditional rice grower and seed producer. 
Source: http://practicalaction.org/disaster-reduction/climatechange_ricebiodiversity 
Approach 4: Protect indigenous varieties to improve livelihoods and 
biodiversity  
Case 9: Surviving the Friaje: Freak freeze conditions in Peru 
The indigenous communities living high up in the Andes (4,000 - 4,500 meters above 
sea level) are some of the poorest and most vulnerable people in Peru. These isolated 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 22  
rural communities are often forgotten, and receive little or no government help. There 
is practically no vegetation at this altitude and communities are highly susceptible to 
adverse weather conditions. They depend entirely on alpacas and potatoes for both 
their livelihood and staple diet. 
The effects of climate change have already taken an increasing toll on the poorest and 
the most remote communities in the Andes, many of whom live 4,000 meters above 
sea level. The "Friaje" of recent winters, a phenomenon of intense cold never 
experienced so extremely before, is challenging highland communities' abilities to 
survive. In 2003, when temperatures dropped to -35
o
C, 50 children died and as many 
as 13,000 people suffered severe hypothermia, bronchitis, and pneumonia. An 
estimated 50 - 70% of alpacas perished and many more were left exhausted and prone 
to disease. 
Growing nutritious food using hydroponic systems  
When the cold hits, and the land dries up, what little vegetation there is blows away. 
Barley grains fetched from the valley floor - with the help of healthier alpacas - are 
grown in a trough of water. The barley is milled, enriched with syrup, and formed into 
blocks. Needing only sunlight and water the whole process takes just two weeks. These 
high energy blocks of barley keep the alpacas healthy and strong when no other food is 
available. 
Protecting indigenous potato biodiversity 
There are 256 varieties of potato that can survive the harsh conditions of the high 
Andes. Practical Action is helping families living at altitudes of 3,800 ft. to maintain this 
crucial biodiversity by developing varieties of local potatoes, as well as improving 
technical aspects of production. A revolving fund for accessing native potato seeds and 
seeders for local production has been established. Ongoing technical assistance is 
being established through the training of 40 Quechuan farmers, chosen by the 
community themselves, as technological leaders. These methods ensure people are 
able to get enough to eat, as well as to earn an income at local markets. The project is 
benefiting 600 peasant families in the Quechuan communities living in the high areas 
of Canchis, Sicuani, and Cusco and it is hoped that the project will ultimately be able to 
reach 1,500 families in total.
 
"As a farmer, I knew very little about plagues. I had no idea where they came from 
or what their lives were like. Now I know about the lives of these harmful insects 
and I have learned new sowing techniques. I am becoming a field researcher and 
am now applying some of the practices that I learned at the training sessions. I can 
also explain many of the practices that I learned from my parents and 
grandparents, which I realize are very valuable, because I know they are good." 
-Abrahan Qu
ito Apaza, farmer from the Pumarorcco community
Source: http://practicalaction.org/disasterreduction/climatechange_friaje 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 23  
Approach 5: Climate-proof livelihood recovery through asset 
protection 
Livestock replacement 
In terms of asset protection, the supply of replacement livestock, livestock fodder, 
and health treatment for surviving animals has proved to be an important 
component of livelihood recovery interventions in the aftermath of cyclones, floods, 
and droughts (Case 10). Restoring small farm livestock activities is also seen as one 
intervention that quickly helps livelihood recovery and improves food security. In 
Orissa, the replacement of livestock, including the provision of cows, poultry, goats, 
and buffalos, as well as livestock fodder, proved to be very effective in livelihood 
recovery (IMM, 2001).  
Case 10: Livestock asset recovery in drought, Anantapur 
Ownership of livestock, especially in arid, semi-arid and other non-congenial rain-fed 
settings, is a critical component of livelihood security. Being more drought resistant 
than crops, livestock can provide a safety net against drought, spreading the risks and 
providing  a more even stream of income to eliminate seasonal hunger. But there is 
mounting evidence that increased reliance on livestock dry land pastures could be 
counterproductive if it leads to further over grazing and land degradation. 
International experience shows that there are arid lands where rainfall fluctuations 
occur (a) from year to year; and (b) in cycles of dry years followed by wetter years. It is 
difficult to formulate strategies and grazing management plans to cope with such 
variability. The light stocking required to match average rainfall can reduce the risk of 
forage deficit and financial loss due to death and starvation of animals in low rainfall 
years. However, this implies lower incomes in good years, although conserving forage 
may produce healthier animals that command higher prices. 
Instead, livestock policies in arid areas should facilitate rapid destocking in bad years 
through opportunistic herding strategies that rapidly adjust grazing pressures to 
ecological conditions, instead of assuming that a single stocking rate will be appropriate 
for all years. But the larger message is that sustainability of livestock management 
must be enhanced in volatile environments by developing support systems for water-
resilient livestock systems and paying close attention to ecosystem productivity and 
sustainability. 
In areas such as Anantapur, farmers tend to have a large number of small ruminants, 
which, though drought resilient, can be more damaging to pastures. However, the 
market for this produce is growing. Sheep and goats comprise roughly 70% of the 
livestock population in these areas, with the remainder serving as milch animals. There 
is much global evidence of the pasture damage that can occur with an overreliance on 
goats. The strategy used by the smallholder mixed (crop-livestock) communities is to 
purchase animals during the rainy season, when fodder is available, and sell them 
during the summer season when there is a shortage of fodder. But the greater 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 24  
incidence of drought in recent years has contributed to a sharp decline in livestock 
populations. There is a need for biomass intensification targeting small ruminants in 
these rain-fed areas for more secure and productive livestock systems. Other solutions 
include promoting the production of fodder-yielding crops, the development of fodder 
banks, and the chopping of fodder by farmers under rain-fed or irrigated conditions to 
overcome the shortage of green fodder during rabi, when the rainy season ends. 
Agriculture-embedded livestock systems have a strategic advantage and yield multiple 
benefits. 
Source: World Bank (2008)
 
Approach 6: Climate friendly natural resource use in recovery 
Case 11: Improving farm income in semi-arid Brazil: Photo-voltaic water pumping systems 
Pintadas  Solar is a pilot project in Pintadas, a municipality of 11,000 inhabitants 
located in the interior of the state of Bahia, Northeast Brazil. The region is 
characterized by a semi-arid climate with hot temperatures, very little precipitation, 
sandy soil, and extended periods of drought, which are increasing due to climate 
change.  
The community of Pintadas, in the Bahia state of Brazil, is suffering increasingly 
severe droughts linked to climate change. There is a high demand for legumes from 
local and national markets, and a potential to cultivate a greater area of land for this 
purpose, but opportunities to expand local agricultural practices in this direction are 
restricted by the absence of an efficient, cost-effective irrigation system. Further, the 
high insulation rate of the area makes it extremely suitable for effective solar energy 
systems. This project seeks to improve agricultural productivity in this increasingly 
drought-prone region through the implementation of a more efficient system of 
irrigation which uses a photo-voltaic (solar) energy system, which is sustainable and 
feasible in terms of use and maintenance by the local community. This project is a 
sustainable, technological approach to adapting to and mitigating climate change. 
The project consists of the installation of an electric water pump powered by solar 
photovoltaic (PV) energy and connected to a drip-irrigation system on a family farm 
in Pintadas.  
The project  has fostered an integrated development approach to community 
adaptation and mitigation to climate change by articulating the use of water 
efficiency and clean energy technologies to improve agricultural practices to enhance 
food security and generate income. Links with the growing biofuel industry are also 
being made. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 25  
Approach 7: Composting: a futuristic adaptation and mitigation 
initiative for solid waste management 
Solid waste management is a common, as well as a primary, environmental concern 
for many cities in developing countries. The open dumping of solid waste is a typical 
problem, but often local urban agencies and municipalities do not have the financial 
capacity to establish and operate sanitary landfills. To address these problems, many 
cities are promoting the 3Rs (reduce, reuse, and recycle) concept and trying to reduce 
the amount of waste generation at the source rather than later at the end-of-pipe 
phase. Composting organic waste is both an adaptation and mitigation initiative. This 
can also prevent greenhouse gas emissions at the final disposal site to some extent. 
An exceptional example is Surabaya City in Indonesia, which has posted outstanding 
achievements in successfully reducing the amount of waste generated by targeting 
organic waste first, rather than implementing a comprehensive 3Rs program, and 
promoting composting practices throughout the city by actively involving various 
stakeholders. The city has become noticeably cleaner and greener in a short period of 
time, as acknowledged by many residents. Its achievements were honored with the 
Adipura Award (Clean City Award) from the central government (IGES, 2009).  
Case 12: Community solid waste management model in Surabaya City, Indonesia 
Surabaya City, the second largest city in Indonesia with a population of three million, 
has successfully reduced its waste generation by more than 20% over a short period of 
time. The city has intensively promoted composting practices by setting up more than 
a dozen composting centers and distributing thousands of compost baskets to 
residents, and has actively involved residents and community groups in waste 
reduction activities by co-organizing a community cleanup campaign with local NGOs, 
private companies and the media. This model may be considered one of the options 
that can be replicated in small cities. Surabaya’s achievement exemplifies how a city 
can reduce a large amount of waste in a few years by primarily targeting organic waste, 
which usually makes up more than half the amount of municipal solid waste, and 
mobilizing internal resources, specifically its residents, community groups, NGOs, and 
private companies. 
Surabaya’s success came in three critical stages. First, an efficient solid waste 
management model was developed in one community. The composting center started 
producing good quality compost (using the Takakura Method) in large quantities from 
separately collected organic waste from the community. This method was further 
modified for use at each household over a period of a few months. Some households 
started producing compost from kitchen waste using compost baskets provided by 
Pusdakota and used the product for plants and flowers. Many households followed 
suit, which changed the mindset of residents and discouraged the dumping of waste 
on streets and in creeks. As a result, the community became greener and cleaner. 
Second, Surabaya City scaled up the project by adopting the same composting method 
at existing composting centers, establishing new centers, and distributing thousands of 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 26  
compost baskets to residents. Local NGOs set up a network of community 
environmental leaders called environmental cadres, who teach the residents how to 
produce compost from daily kitchen waste using the baskets. Pusdakota purchases the 
compost produced by basket users at IDR700 (USD0.07) per kilogram, which enables a 
household to earn an income of IDR4,200 (USD0.42) a month by processing one 
kilogram of organic waste a day, as about 20 percent of the input ends up in the final 
product. Some people scale up their composting activities to increase their income by 
collecting additional organic waste from other households, gardens, and streets, or 
instead by selling seedlings, herbs, and vegetables grown with the compost. 
Third, the city, in collaboration with NGOs, private companies, and the media, 
organized a community cleanup campaign called the Green and Clean Campaign. The 
campaign grew popular due to the widespread media coverage in local papers and on 
TV programs, and thanks to the festival-like award ceremony. 
Constraints:  
It is not easy to secure a market for compost and often demand fluctuates seasonally. 
In fact, Pusdakota stores a large stock of compost in a work space which could 
otherwise be used for increased production. Another challenge for NGOs and 
community groups is covering the capital costs of establishing a composting center. 
These are the two main reasons why there is still only one community composting 
center in Surabaya even after years of success by Pusdakota. 
Source: IGES, 2009. 
This example shows that Surabaya’s success was achieved by highlighting the 
significant environmental benefits of reducing GHG gas emissions in a climate change 
situation by adapting a simple eco-friendly composting practice at the local level. 
Countries which need to purchase carbon credits, including industrialized countries, 
may consider this option by taking into account the positive impacts. However, at 
present, the composting project is not registered as a CDM project but it will surely 
be a potential CDM initiative in the future. If a CDM methodology specialized for the 
Surabaya model is developed, agreed upon by all stakeholders, and approved, the 
implications would be enormous, as it has tangible co-benefits (social and 
environmental impacts) and the potential to be replicated in many other cities.  
Approach 8: Innovations in livelihood sector recovery  
Recent studies have implicated climate change-induced floods and droughts as the 
primary agents in human migration, cultural separation, and population dislocation. 
Human migration due to climate change and environmental stress is a well 
established survival strategy across continents, including Africa, Eurasia, South 
America, and Australia. 
Each year thousand of households are affected by floods in Bangladesh, India, Sri 
Lanka, Indonesia, Vietnam, and other countries. The apparently infertile soil is left 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 27  
behind after floodwaters recede, leaving sand and silt to cover 
the land. By simply 
digging holes in these sandy residues and filling them with manure, compost, and 
vegetable seeds, residents have shown that crops can thrive. In addition to producing 
a high yield and being packed full of health benefits, crops like pumpkins can be 
stored for up to a year, providing a crop for either consumption or sale during times 
when employment opportunities are low.  
Case 13: Hope for Climate Change Refugees in Bangladesh 
There is new hope for stretches of land across the vast delta where three great rivers 
meet. Bangladesh is prone to flooding. In addition to experiencing monsoon rains, the 
slow cooking of the earth's atmosphere, according to theory, will release more water 
from Himalayan glaciers above the flatlands of Bangladesh. Climate change, say 
scientists, also means higher tides in the Bay of Bengal. The result is trillions more liters 
of water sloshing over the country, depositing billions of tons of sediment. 
The new village of Amader Bandhan stands on a sandbar about 190 miles northwest of 
Bangladesh's capital Dhaka in the district of Gaibandha, and consists of 100 half-brick, 
half-tin homes. Its population is drawn from the ranks of the country's climate change 
refugees.  
In the last 18 years, Gaibandha had seen floods that used to only occur once every 100 
years or once every 50 years. These are not freak events but reflect a pattern of 
significant change. Bangladesh has to cope with much more devastating floods much 
more often (Ramesh, 2007). Nowhere is the climate change impact more broadly felt 
than in the chars of Gaibandha, islands of sediment in watery channels, created by the 
swell of the rivers, monsoon rains, and sand carpeting, which can leave once fertile 
land useless. Local people have always faced seasonal loss in this ever-shifting terrain. 
But global warming has accelerated this cycle of disaster.  
Due to recurrent sand casting, the land was unable to support crops, but dedicated 
NGO activists introduced a ‘pit system’ of agriculture on riverbanks. Holes were dug in 
the sand and filled with compost and mud. Sweet gourds were planted, providing 
vegetables that can be pickled and sold during the monsoon, when the prices rise. Each 
family gets 50 pits. Usually when the rains come it is a disaster for them, but now they 
will be able to save for hard times.  
Lesson 
x  The sandbar and other innovative technologies, such as floating gardens and 
fish farming, can have a huge impact on the livelihoods of people who are 
likely to suffer increased stress due to climate-induced disasters in flood-prone 
areas in future. 
 
 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 28  
Case 14: Vertical Vegetable Gardens in Sri Lanka 
People displaced by war in Sri Lanka enrich their diets by planting vertical vegetable 
gardens that are resource efficient, cheap to establish, and even portable.
 
For 
farmers in the north and east of Sri Lanka, achieving food  and livelihood security 
seemed impossible in the midst of war and unrest in that region. By the time the war 
finally ended in May 2009, many of these farmers had become internally displaced 
persons (IDPs) residing in camps far from the lands they once cultivated. WFP 
provided dry rations for IDPs. Fresh vegetables were lacking because they were 
logistically difficult to supply. Working in Vavuniya District in the northeast, the 
International Water Management Institute (IWMI) provided a solution to this 
challenge.  
Planting vertical vegetable gardens, or vegetable towers, is an innovation promoted 
by the International Network of Resource Centers on Urban Agriculture and Food 
security (RUAF Foundation, www.ruaf.org), of which IWMI is a member. IWMI is also 
the regional coordinator of the RUAF-Cities Farming for the Future Program in South 
Asia. 
Setting up a vertical vegetable garden is simple and quick. A recycled poly sack is filled 
with a mixture of earth, sand, and cow dung. A pipe with spirally placed holes or a 
plastic bottle with little holes in it is inserted into the middle of the sack. Bigger holes 
are made on the sack at intervals, where leafy vegetables, tuber crops or others 
vegetables are planted. Several types of vegetables can be grown on one sack. 
Generally, creepers and root vegetables are planted on top of the sack, and others 
grow from the sides. Okra, aubergine (eggplant), tomato, radish, carrot, long bean, 
snake gourd, bitter gourd, capsicum, and chili have been successfully grown.  
The vertical garden is irrigated by simply pouring water into the pipe or plastic bottle, 
from which it gradually seeps into the soil in the sack. The technique saves water 
because it is administered in trickles. Kitchen wastewater can be used, as it is already 
rich in nutrients. The sacks occupy very little space. If a person shifts to another 
location, as do many IDPs, the garden can come along. Labor for maintenance is 
minimal compared with a traditional vegetable garden. The cost of setting up a 
vertical vegetable garden measuring 48 centimeters in diameter and 168 centimeters 
tall is US$10.  
Having received permission for implementation from the Sri Lankan government, 
IWMI and the Department of Agriculture trained agricultural extension staff and 
schoolchildren  and set up several demonstration plots. The technology was 
enthusiastically received by trainees, and 200 of the 300,000 IDPs were selected for 
initial implementation. As IWMI is a strong advocate of gender equality and many of 
its projects have a gender component, the Institute is especially pleased that many 
women have shown an interest in vertical gardens. Women in Sri Lanka, especially in 
rural areas, play a key role in procuring food and water for households, and IWMI 
assists in identifying and evaluating water-saving technologies and best practices. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Enhancing Climate-Resilient Livelihoods in Recovery| 29  
Source: CGIAR, 2010, website accessed on 28 May 2010    
http://www.cgiar.org/monthlystory/may_27_2010.html  
Lesson 
x  Vertical gardens are appropriate in any developing country with limited land 
or water resources and have potential also in developed countries where 
people prefer to grow their own vegetables. 
For further information please see:   
http://www.bothends.org/strategic/localcontributions_bangladesh.pdf  
http://maindb.unfccc.int/public/adaptation/adaptation_casestudy.pl?id_project=19  
http://ruaf-asia.iwmi.org/  
www.iwmi.org/Topics/Gender
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Adapting to Climate Change:  Build Stronger Infrastructure to Reduce Risk| 30  
Adapting to Climate 
Change:  Build Stronger 
Infrastructure to 
Reduce Ri
sk
 
Approach 1: Flood-resilient building in recovery 
Following any sudden disaster, the permanent infrastructures that link industrial 
centers with major areas of primary products and local livelihood activities, such as 
roads, railroads, and waterway networks, are affected most. The coastal and island 
regions face the fury of cyclones, storms, coastal flooding, and other disasters. Even 
without climate change, these regions of many countries are already severely 
affected by climate variability and extremes, and they remain vulnerable to future 
changes in the regional climate that could increase their risks. Climate change may 
lead to industrial relocation, resulting either from sea-level rise in coastal-zone areas 
or from transitions in agro-ecological zones. Additionally, these regions are facing 
increasing environmental and socioeconomic pressures exacerbated by global 
climate change and climate variability. If sea-level rise occurs, the effects on the many 
harbors and ports around the continent will be quite devastating economically for 
many coastal-zone countries. Adaptation to climate change and variability is 
ultimately an issue of both post-disaster recovery and sustainable development.  
At present there is a considerable degree of climate-related risk involved in 
infrastructure recovery projects, and future climate scenario situations suggest 
substantially higher risk as a result of increases in climate extremes and variability. 
Climate change, if adaptations are not made or countermeasures not taken, will 
compromise the functionality of the existing infrastructure. The adequacy of the 
infrastructure may be further challenged by its physical / mechanical aging. For 
upcoming infrastructure recovery projects, it is possible to avoid most of the damage 
costs attributable to climate change, and it is possible to do this in a cost-effective 
manner, if climate proofing is undertaken at the design stage of the project. 
Therefore, so-called recovery managers are urged to consider the likelihood that 
adverse weather will increase in frequency and intensity and that unfavorable climate 
conditions will persist, and thus to develop climate-proof recovery strategic plans to 
enhance the environment for adaptation.  
The housing sector seems to have had the least successful post-disaster recovery 
interventions over the last decade in Bangladesh. Major infrastructure projects after 
the 1998 floods did not include individual housing rehabilitation and recovery, and 
instead focused mainly on public infrastructure. It appears that housing interventions 
Chapter 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Adapting to Climate Change:  Build Stronger Infrastructure to Reduce Risk| 31  
supported by NGOs since the 1988 floods, including the 1991 cyclone, have faced a 
number of problems (ALNAP, 2002). Given the relatively large scale of the asset, 
appropriate coverage and targeting have been problematic, with some benefits going 
to the non-poor and some overlaps in geographical coverage occurring. Much of the 
housing provided through various interventions was better than that provided 
through a housing replacement scheme, which increased the cost and decreased the 
numbers of people that could be helped. There was little coordination among 
agencies in design. Problems with design ranged from buildings with too little floor 
space, to the use of reinforced concrete pillars in inappropriate soils, and a lack of 
participation of the affected population leading to inappropriate design. Also, there 
was a wide variation in costs. 
Year after year, floods threaten the homes and livelihoods of thousands of people in 
vulnerable parts of Bangladesh. Yet a few simple, cost-effective improvements can 
help a house remain standing throughout the monsoon season. NGOs worked with 
communities to develop simple designs, like a two-foot high concrete plinth, which 
will prevent a house being washed away. A plinth raises a house up. It is made from 
soil, a little cement, and some pieces of stone and brick, and unlike traditional 
earthen floors that simply wash away, is strong and high enough to last through 
repeated floods. Bracings and fastenings bind the walls firmly to the house ‘skeleton’ 
through a network of holes and notches – locally called a ‘clam system’ – and the 
whole building can stay standing through the strongest of winds and rain. Animals are 
considered in the plans too. Crucial to the family’s welfare, poultry and livestock have 
a separate area in the improved houses, to improve hygiene and to ensure that the 
henhouse can be picked up and carried to safety, out of the way of the floodwater. 
Water-thirsty plants are set around the house, such as bamboo, banana, hogla and 
kolmi – they ‘drink up’ flood water and hold onto the soil, helping the whole 
homestead remain intact. Most plants can be found growing wild locally, but a little 
people power is needed to get them in place (Practical Action, 2009).  
x  Houses are raised off the ground on a 1m high concrete base. 
x  Walls made from jute panels, strengthened with bamboo. 
x  Bamboo and banana trees are planted to soak up the water. 
Case 15: Flood-resistant houses in rural settlements in Bangladesh 
Wazuddin Fakirer Dangi, is a village located 3 km from the river Padma, in Faridpur 
District. This area is in the Char-lands (Bengali name for ‘islands within rivers’) and is 
highly susceptible to severe flooding during the monsoon season. Villagers' houses 
were  provided by Practical Action, and designed to give them more protection from 
floods. Houses are built on a raised plinth made from sand, clay, and cement (meaning 
it is less likely to be washed away in floods), and made using concrete pillars and 
treated bamboo poles. Practical Action built the house using readily available and 
affordable materials, so that other families can copy the design and reap the benefits 
of the improved structure. It is important to work with local communities to choose the 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Adapting to Climate Change:  Build Stronger Infrastructure to Reduce Risk| 32  
best ideas, using local knowledge and local materials, which are affordable. 
Two solid floor plinths can be mixed and finished for only £31.  Durable walls for 10 
houses can be built from bamboo and jute for £62. As little as £120 is enough for all the 
nuts and bolts needed  to hold 20 houses together, through the worst conditions, 
bringing the total cost of planning and building a flood-resistant house using all these 
techniques to £172.  
Sources: Flooding in Bangladesh: Teacher’s note 
http://www.climatechoices.org.uk/docs/bangladesh_pps_notes.pdf 
Lesson 
x  Recovery support for housing reconstruction should be based on indigenous 
designs and adaptable to flooding, such as movable housing or housing made 
from sturdier materials, and should use local materials and labor where 
feasible. This housing must be of the kind that can be rebuilt, repaired, or 
expanded by owners.  
Case 16: Flood-resistant housing; Adapting to climate change in Dhemaji, Assam 
The district of Dhemaji is located in the foothills of Arunachal Pradesh on the northeast 
stretches of the Brahmaputra River with Subhasiri on the one side and the Siang River 
on the other. Tribal communities like the Mishing, Deori, Koibatra, and Miya Assamese 
live on the banks of the river and are mostly below the poverty line (BPL). The 
monsoon season in this subdivision starts in April/May and continues until 
August/October. The floods in these areas are caused by excessive rains in Arunachal 
Pradesh and nearby states, siltation, and change of river course due to erosion.  
The housing types in the rural Assam are stilted houses and so-called ‘Chang Ghar’ 
(hanging houses) that are designed  for flood adaptation. These types of houses are 
typically used by members of the Mishing tribal community who are familiar with living 
near flood-prone rivers. Traditionally, these houses were used to save granaries from 
floods. Other communities have also started following the same method for housing. 
The stilting is done using timber. Split bamboo mats are placed over the bamboo 
framework to form the walls. Flooring is basically comprised of mats made out of split 
bamboo or wooden planks. One of the most peculiar characteristics of a chang ghar is 
the kitchen in the center of the living room. The pigs remain under the floor of the 
chang ghar eating the dropping from the house.  
Due to siltation in the river, many villages remain submerged for more than four 
months in a year. Homestead rising is done in many places, but this is not the right 
solution. Local resources, both building materials and human resources, are available 
for repair and rebuilding.  
The chang ghar types of buildings are generally suitable for habitation even after they 
have been affected by floods and sand casting. In extreme cases, people are used to 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Adapting to Climate Change:  Build Stronger Infrastructure to Reduce Risk| 33  
dismantling their houses and keeping the wooden poles and trusses in a safe place 
until they can be reassembled after the flood waters recede. Bamboo and timber are 
plentifully available locally. Timber which has been washed away from the forested 
hills of Arunachal Pradesh during the floods is collected from the river and stored by 
local people for future use. 
Lessons 
x  Recovery support in housing reconstruction must be based on indigenous 
designs and adaptable to flooding, such as movable housing or housing made 
from studier materials, and should be made using local materials and labor 
where feasible. 
x  Housing recovery programs are more sustainable when the housing can be 
rebuilt, repaired or expanded by owners with technical support from external 
agencies and technical experts. 
Case 17: Infrastructure climate-proofing project in Kosrae, Micronesia 
Climate change will most often appear in the form of changes in the frequency and 
consequences of extreme events and inter-annual and similar variations, rather than as 
long-term trends in average conditions. At a practical level, adaptation should thus 
focus on reducing both present and future risks related to climate variability and 
extremes. In many instances, current levels of climate risk are already high due to 
increases in risk over the past few decades. Moreover, adapting to current climate 
extremes and variability prevents precious financial and other resources from being 
squandered on disaster recovery and rehabilitation and is an essential step to being 
able to withstand the pending changes in climate. Adaptation has many dimensions 
and must also be viewed as a process. 
The Cook Islands Ports Authority was in the process of developing the Western Basin of 
Avatiu Harbor in Rarotonga to accommodate an increasing number of fishing vessels, 
to provide sufficient wharf to minimize delays in offloading fresh fish, and to allow the 
fishing vessels to use the harbor in most maritime conditions other than those 
associated with cyclones. The first stage, involving an expenditure of NZ$1 million 
sourced through a government grant,  overseas aid grant, cash reserves, and a loan, 
involved the construction of a wharf facility, but with no added protection against 
storms beyond what is provided by an existing breakwater. 
The design brief for the Western Basin states that the breakwater and quay walls 
should have a nominal design life of 60 years. Fixtures should be robust enough to 
withstand a cyclone with a 10-year recurrence interval. The brief acknowledges that 
severe damage will be sustained by fixtures in a cyclone with a 50-year recurrence 
interval. It goes on to say that the main quay should be designed to withstand wave 
forces associated with a cyclone with a 50-year recurrence interval with only minimal 
damage. Cyclone wave heights should be based on a 50-year recurrence interval, and a 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Adapting to Climate Change:  Build Stronger Infrastructure to Reduce Risk| 34  
calculated significant wave height of 10.75 m (10 percentile wave heights of 13.65 m). 
The relationship between maximum wind speed and significant wave height for a given 
recurrence interval was determined using past studies of tropical cyclone risks for the 
study area. It thus represents the “current” climate. However, both the historical 
record and some global climate models (GCMs) suggest that the frequency and 
intensity of cyclones in the vicinity of Rarotonga are increasing and may continue to 
increase, asymptotically. Consideration was given to the impacts of global warming on 
changes in cyclone intensity and, hence, significant wave heights. In light of these 
findings, a 2.5–10% increase in cyclone intensity per degree of warming was used. 
Under current climate conditions, the 50-year significant wave height is estimated to 
be about 10.8 m. Under the climate projected for the year 2060, the 50-year significant 
wave height increases to about 12.0 m. The sea-level projections incorporated both a 
regional component based on GCM results and a local component based on trends in 
mean sea level as estimated from tide gauge data. After accounting for the climate-
related rise, the local trend appears to be about 1.7 mm/yr, most likely related to 
vertical land movement. By the year 2060, the mean sea level is projected to rise by 50 
to 80 cm over current levels. 
The final concise report for the development of the Western Basin indicates that the 
breakwater should have a nominal design life of 60 years. Given this specified design 
life, and the preceding projections regarding recurrence intervals for extreme winds 
and hence significant wave heights, and of sea-level rise, the breakwater design should 
be based on a significant wave height of at least 12 m and allow for a sea-level rise of at 
least 0.5 m. 
Case 18: Integrated Climate Change and Flood Management Plan, Pune City, India 
The city of Pune in Maharashtra State, India, has a population of nearly 5 million people 
and is located at the confluence of three rivers, the Mutha, Mula and Pavana. It has 
been affected by several severe floods over the last six decades, the most significant 
being the 1961 flood that involved a major dam failure. Anticipating an increased 
frequency of floods owing to climate change, and in order to reduce its carbon 
footprint, the city authorities have developed a comprehensive climate change 
adaptation and mitigation plan. 
A systematic city-wide plan of practical action to reduce flooding was implemented. 
The first step was to assess the flood risks by analyzing hourly rainfall intensity and 
examining the likely changes in impacts in low-lying areas and places where natural 
drainage was blocked by the construction of houses or by roads without adequate 
bridges. A detailed city drainage map was developed. The plan introduced structural 
and planning measures for restoring natural drainage, widening streams, extending 
bridges, and applying natural soil infiltration methodologies. Watershed conservation 
techniques such as afforestation and building small earthen check dams were 
undertaken in the hilly areas. Property tax incentives were provided to encourage 
households to recycle wastewater or use rainwater harvesting by storing run off from 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Adapting to Climate Change:  Build Stronger Infrastructure to Reduce Risk| 35  
their roofs for domestic use. These efforts were complemented by improvements in 
flood monitoring and warning systems and social protection for affected families. The 
initiative has been jointly driven by the elected municipal government, the municipal 
commissioner, and an active citizen group called Alert, and involves many different city 
departments. It demonstrates that local governments can prepare for climate change 
by reducing and managing the local factors that lead to disasters. 
Source: UNISDR (2009). 
A risk-based approach to adaptation is both desirable and applicable. It combines 
both the likelihood and consequence components of climate-related impacts and can 
assess risks for both current and anticipated conditions, with the option of examining 
either specific events or a combination of those events over time. A risk-based 
approach also facilitates an objective and more quantitative approach, including cost-
benefit analyses, that results in an evaluation of the incremental costs and benefits of 
adaptation and assists in prioritizing adaptation options. 
However, there are a few shortcomings of the risk-based approach. Most barriers to 
the successful application of a risk-based approach to adaptation relate to the 
existence of, and access to, information. Additional barriers include the need for 
formal specification of risk-based targets that define future levels of acceptable risk. 
NOTE: 
Development practitioners and recovery managers are urged to note 
and act on the finding that the likelihoods of adverse weather and climate 
conditions are already high and are projected to increase in the future. Similarly, 
the consequences of these weather and climate events are also already very 
severe and are likely to increase markedly as a result of climate change. Most 
climate-related risks can be reduced in a cost-effective manner. 
Governments should ensure that all regulations (e.g., building codes, public 
health regulations) are also climate-proofed as this will allow the enforcement of 
policies and plans that should, themselves, be climate-proofed. They should 
ensure that all proposed recovery programs, including new and upgraded 
development projects, are climate proofed in the design stage. This should be 
part of good professional practice, with the national and state Climate Risk 
Profiles being used as the basis for climate-proofing the infrastructure, 
community, and other development projects. Compliance with this requirement 
should be assessed as part of enhanced EIA procedures. 
The design and funding implications associated with the climate-proofing of 
developing countries, their recovery infrastructure, and their community and 
other development projects are addressed early in the project cycle; and the 
incremental costs of this climate-proofing can be met from other sources 
including soft loans, special recovery grants, and other sources in the future. 
The risk-based recovery approach can be linked to sustainable development by 
identifying those risks that may arise due to climate variability and change. Disasters 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Adapting to Climate Change:  Build Stronger Infrastructure to Reduce Risk| 36  
often provide opportunities not just to recover to a pre-existing status but also to 
take additional steps toward further climate-resilient development. 
For Further Information please see:  
http://www.climatechoices.org.uk/docs/bangladesh_pps_notes.pdf   
http://practicalaction.org/disaster-reduction/flood-resistant_housing   
Approach 2: Balanced Sectoral recovery intervention: infrastructure 
and livelihoods  
Imbalances in post-recovery sector development increases number of vulnerable 
families  
Community infrastructure development in the recovery phase alone cannot provide 
protection against future disasters. It must be part of a greater strategy of combining 
livelihood recovery with disaster risk reduction.  
Case 19: Imbalances in post-recovery Sector Development after 2008 Mozambique flood  (Not Good 
Practice) 
Many households in the southern provinces of Gaza and Maputo, and in northern 
Inhambane (Govuro), lost significant numbers of large livestock during the 
Mozambique floods. Livestock is an important part of a household's livelihood and 
acts as a hedge against crop loss. Poorer households lost chickens and ducks. Cattle 
are symbols of wealth and power within the community. The re-stocking of high 
value animals such as cattle was less common in all of the areas visited. When cattle 
were distributed, it was always through a formal association or group distribution 
system. Small livestock were distributed with varying degrees of success. A number of 
villages were decimated by Newcastle’s disease in chickens shortly after the 
restocking had been completed. 
In the recovery, the inability of the government and/or agencies (perhaps due to the 
large capital investment that would be needed) to address the question of asset 
depletion in the form of cattle loss has meant that the rural communities of Chokwe, 
Marracuene, and Govuro are significantly more vulnerable than they were before the 
floods. The agencies present in these areas during the recovery period were aware of 
the livelihood strategies of the populations with whom they were working. However, 
although the agencies and the government authorities were aware of the strategies, 
this did not always translate into interventions that would help to restore or improve 
individual livelihoods. On the contrary, the work resulted in extensive recovery of the 
social and economic infrastructures in the district. The organizations that 
collaborated during the recovery period also recognized the need to continue their 
partnership in the post-recovery period due to the high risk of subsequent disasters 
related to future climate variability and their initiation of changes that require long-
term, sustained input to reduce vulnerability.  
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Adapting to Climate Change:  Build Stronger Infrastructure to Reduce Risk| 37  
Case 20: Gaza Province, Chokwe District, Lhate Village 
Villagers in Lhate were evacuated during the floods and returned to their homes after 
the flood waters retreated. The remote rural community relies on small-scale 
subsistence farming and the trading of agricultural products in good years. After the 
war, a number of families had invested in cattle. During the recovery period, after their 
return home, the people of Lhate benefited from housing materials, seeds and tools, 
and basic domestic utensils. Small livestock (chickens and ducks) were also distributed, 
although the chickens died of Newcastle’s disease during the first year. Vukoxa (a local 
NGO for the elderly) helped the community set up a farmers’ association that included 
the elderly of the village. While the association was provided with cattle for plowing 
and breeding, individual households were not provided with livestock to replace cattle 
lost during the floods. The village also benefited from a new school and health clinic. 
In general, it is probably fair to say that the people of Lhate benefited from post-
emergency interventions in terms of habitation security and infrastructure 
development that will bring long-term benefits for the population. However, this poor 
rural community is without doubt poorer, and households have reduced options in 
terms of their coping strategies. 
Optimism rests with the ability of the villagers to work together in the newly formed 
associations and to take advantage of the social and economic infrastructure now 
available in the area. 
Source: Wiles et al. (2005). 
Approach 3: Localized approaches for climate-resilient urban flood 
management 
Case 21: Super levee in Japan: Flood-resilient peri-urban land use adaptation  
In 1977, the River Commission of the Ministry of Construction recommended 
Comprehensive Flood Control Measures in rapidly urbanizing basins. It suggested not 
only upstream retardation using dams and downstream river channel improvements, but 
also that the development of residential areas so that no new extra discharge would be 
generated. Earlier the basic strategy for flood control in Japan was to direct water to the 
sea as soon as possible. The means of control were a continuous levee system, divergent 
canals, and sediment control. During the period of rapid growth after World War II, 
floods became prevalent in rapidly urbanizing areas where paddy fields and hill slopes 
were converted to residential and industrial areas. As this sprawling urbanization 
continued, floods in relatively small urban rivers and sporadic landslides were the major 
causes of damage. In 1987, the River Commission recommended a high standard levee 
policy and thus began the construction of super levees, such as that found in the 
downstream portions of the Sumida River in Tokyo. A super levee consists of elevated 
land behind the original narrow laser-like levee. The base length of a levee is typically 100 
to 150 m long. The super levee protects urban areas where there are extensive urban 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Adapting to Climate Change:  Build Stronger Infrastructure to Reduce Risk| 38  
facilities and absolutely no levee breakage is allowed 
To respond to increasing flood risks and their devastating consequences to society, Japan 
developed the concept of super levees. A super levee is a river embankment with a broad 
width which can withstand overflow. It prevents uncontrolled flooding due to a dike 
break. The slope of the embankment is made very gentle. In the unlikely event that the 
river rises above the embankment, the water would spill ‘gently’ down the slope. The 
embankment is protected from destruction and serious damage to assets along the river 
is minimized. The super levee differs from the conventional embankment, which is 
basically a wall separating inland areas from the river. 
The adaptation of conventional dikes to super levees offers a number of benefits. A super 
levee is more resistant to overflow, seepage, and earthquakes. In addition it provides 
usable land and space for urban development and it restores access to the riverfront. The 
concept of super levees is also a good example of the multifunctional use of 
infrastructure. 
 
Source: The International Water Source: The International Water Association (IWA), IUCN and the World 
Water Council, 2009. 
Climate change seems to increase the frequency of torrential rains with high intensity. 
AMeDAS (Automated Meteorological Data Acquisition System) observation records 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Adapting to Climate Change:  Build Stronger Infrastructure to Reduce Risk| 39  
show that over the past 20 years, the number of heavy rainfall events producing 
more than 100 mm/hr have nearly doubled (River Bureau). 
In the past, people had no control over the river, but they still protected lives and 
assets using small-scale technologies, local knowledge, wisdom, and traditions, and 
cooperation within their communities. Flooding from the river was accepted as a 
natural phenomenon, so that rather than trying to prevent flooding, people instead 
developed tools to reduce damage. The floods were also considered beneficial 
insofar as they brought a fresh coating of silt and mud, helping to regenerate the soil 
and improve crop yields. Given the present threat posed by climate change, mere 
technological options may not be sufficient to reduce disaster impacts. 
Case 22: Damage reduction technology intervention at the community/household level in Japan  
To reduce the impacts of floods, 
traditional ring dikes have been 
built in some areas to protect 
several houses and cultivated 
areas. These types of ring dikes are 
observed in several locations and 
are interconnected in main places. 
A key feature of a ring dike is that it 
is maintained by the local 
community. In each village and 
neighborhood, there are special 
committees to look after the ring 
dikes, which often become too 
expensive for local residents. Cooperative maintenance helps to strengthen local 
community ties and bonds and develops self-esteem in communities.  
To reduce the impacts of floods, some communities use elevated houses (known as 
mizuya in Japanese). These are mainly seen among relatively well-off families but can 
be used as potential shelters for the neighborhood. Well-off families possess larger 
amounts of land, bigger houses, and more assets than ordinary citizens. In addition to 
their main house, well-off families also possess a mizuya, which is an elevated house to 
be  used  in  case  of  flooding. Initially, the mizuya was built as a storage area only for 
protecting household assets. At that time, the mizuya’s height was only 2 m. In 1896, 
this area experienced a severe flood disaster. The mizuya  was destroyed due to 
flooding. During the flood, a lot of driftwood hit the main house and the mizuya
resulting in very serious damage. After the disaster, the homeowners’ priority was to 
protect the main house from driftwood. In addition, the homeowners reconstructed 
the mizuya by raising the plinth level 1.3 m over the previous plinth level of 2 m (Figure 
5). Furthermore, the modified version of the mizuya  is one in which people can also 
stay for a longer period. It now consists of two rooms, two storage areas, and a toilet. It 
can also be observed that well-off families have emergency boats available for 
Flooded house in Japan. mizuya’s plinth height adjustment 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Adapting to Climate Change:  Build Stronger Infrastructure to Reduce Risk| 40  
evacuation. Usually, one specific section of the main house is elevated and people can 
take shelter in this elevated area. This also helps in reducing the impacts from 
secondary sources of damage such as debris and theft. 
Local and traditional knowledge has proven useful. Such knowledge may change from 
time to time but the principles remain unchanged. Since most of these traditional 
pieces of knowledge and technologies have been modified over time, they offer 
higher resilience and lower redundancy. Moreover, community involvement is the 
key to the success of localized knowledge. Too much dependency on modern 
technology makes people dependent on the system. This reduces a community’s own 
capacities and erodes the concept of self-help. Thus, the ideal disaster reduction 
measures will incorporate a balanced combination of modern technology and 
traditional knowledge. Traditional, local and  indigenous knowledge plays a crucial 
role in going “the last mile” and bridging the gap between theory and practice in the 
implementation of climate-resilient technologies, since they are closer to the people 
and communities. 
All stakeholders must be involved in planning and implementing climate change 
strategies in urban areas. This can be done by ensuring that climate change 
information is included in formal municipal education programs, by creating public 
awareness, including within slums and other informal sectors, and by paying 
particular attention to the needs and potential roles that can be played by youth and 
women. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Strong Institutional Support for Climate-Resilient Recovery| 41  
 
Strong Institutional 
Support for Climate-
Resilient Recovery 
Approach 1: Integrated climate risk 
management in recovery through local institutions  
The geographic location of Bangladesh in South Asia, at the confluence of the three 
mighty river systems of the Ganges, Brahmaputra and Meghna, renders her one of 
the most vulnerable places on earth to floods and cyclones. Human-induced climate 
change exacerbates the problem, with its already manifest effects, and the half-
meter sea-level rise that is predicted to occur by 2050 is likely to permanently 
inundate about 11% of the territory of Bangladesh (IPCC, 2001). With her age-old 
experience of coping with natural disasters, Bangladesh has already established an 
institutional mechanism for management that recognizes the role of different 
stakeholders. The country has also formulated a changed corporate approach that 
emphasizes broad-based strategies for disaster management that involve the 
management of both risks and consequences of disasters, including prevention, 
emergency response, and post-disaster recovery. A major focus entrusted to 
community involvement for preparedness programs is to protect lives and properties. 
Involvement of local government bodies becomes an essential part of the strategy. 
Local institutions know their communities and should have the main responsibility for 
identifying the poor and vulnerable and supporting them in building safe rural and 
urban settlements. These institutions should ensure that climate information reaches 
the poorest and most vulnerable through appropriate services. 
The combined experiences of Bangladesh are often cited to demonstrate progressive 
and comprehensive approaches to recovery interventions and a thorough 
understanding of the climate change context, as key decisions are based on risk 
assessments following disasters. 
Case 23: Disaster risk management and recovery system in Bangladesh  
Chapter 
Following  a  major cyclone in 1991, Bangladesh authorities were motivated by the 
frequency of disasters and a sharpened general awareness of disaster risks to reassess 
some of their disaster reduction strategies as a part of the recovery process. The 
cyclone shelters were redesigned, enlarged, and relocated in closer proximity to 
current population centers. Cultural traditions and behaviors also were taken into 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Strong Institutional Support for Climate-Resilient Recovery| 42  
Approach 2: Building local institutions and local capacities for 
increased resilience to climate change  
The adaptive capacity of people and communities is mediated through institutions. 
Disseminating information, building knowledge, articulating needs, ensuring 
accountability, exchanging goods and services, and transferring resources: all these 
are needed for adaptation and are guided by and happen through institutions. In an 
uncertain world, adaptation cannot be effective without effective and accountable 
organizations and institutions. 
While the effects of climate change may be vast, their brunt will be borne locally by 
individuals, families, villages, and neighborhoods. Discussions of climate change must 
be turned upside down, switching from a global to a local focus. Priority must be 
account, with later accommodations even being made for the safekeeping of the 
economically important family livestock. Important design modifications required the 
shelters to be constructed with two elevated stories to protect families displaced by 
floods.  All other official buildings on the low-lying coastal lands and off-shore islands 
were required to be built of resistant engineered pucca construction. In all cases newly 
built official public buildings such as police stations and health facilities were to have 
two stories so they could serve as informal emergency shelters in times of flooding. 
Crucially, all shelters were built so that they could be used routinely throughout the 
year as schools, health clinics, or other public facilities. These everyday functions 
ensured that the buildings were well maintained, and more importantly, that they 
assumed a familiar public association with civic needs and disaster preparedness. Over 
the years, these community cyclone and flood shelters have become an integral 
element in the overall local risk reduction strategy, while also offering development 
benefits. They offer public education and preparedness activities, and are a focus for 
emergency exercises and evacuation drills practiced by local preparedness committees. 
All of these activities together have come to be widely characterized as a strategy for 
"living with floods." The government agencies developed and implemented a number 
of recovery projects to address both future climate-change-induced threats and 
livelihood opportunities as part of the recovery program.  
Lesson 
x  Bangladesh made a pronouncement, and implemented  comprehensive and 
integrated risk reduction approach to post-disaster recovery management 
based on the government’s new strategy and program. Long-term recovery 
provides a physical opportunity as well as the basis for collective inspiration to 
introduce climate change options through structural and non-structural risk 
reduction elements. Integrating disaster risk reduction into any prior planning 
of  recovery, including its explicit reference in anticipated climate change 
impacts, may be considered. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Strong Institutional Support for Climate-Resilient Recovery| 43  
given to strengthening existing capacities, particularly among local authorities and 
civil society organizations, and to laying the foundations for the robust management 
of climate risk and the rapid scaling up of adaptations through community-based risk 
reduction. Capacity building and capacity development are among the most urgent 
requirements for addressing climate risk, particularly at the local level. The capacity of 
the community to understand climate risk issues, effectively use available 
information, develop the necessary institutions and networks, plan and build 
appropriate CCA actions are among the key considerations.  In addition, applying the 
Hyogo Framework for Action (HFA) on Disaster Risk Reduction at the community level 
can help create the necessary environment for achieving many of the goals of CCA. 
Case 24: 
 
Role of Community Institutions and Participatory Water Resource Management in Drought 
Adaptation Participatory water resource management in drought adaptation in Amhednagar 
Several landmark examples can be cited from Maharashtra of community-managed 
water resource management initiatives that have resulted in significant local benefits 
to communities, including improved natural resource management and livelihoods in 
low rainfall environments. 
Located in Ahmednagar district, the village of Hiwre Bazaar is not covered by any 
major irrigation program. Years ago, it was similar to thousands of other villages in the 
same block that lacked access to any irrigation. However, effective watershed 
development and management efforts over the last 15 years have transformed the 
earlier conditions, had positive outcomes in terms of ecosystem restoration (such as 
improved soil moisture content), and assured incomes from agriculture even during 
drought years. This has also reduced outward migration. The village has developed its 
own water regulations linked to its crop plans, which promote a mix of vegetable and 
millet crops. Annual decisions on cropping intensity ensure efficient management of 
resources and their equitable distribution for crop growth. 
In Korhate village in Nashik, a water user association (WUA) administers water 
resource sharing for irrigation in major projects. Water allocations are entirely based 
on cropping patterns and associated volumetric allocations. The WUAs have been 
found to function effectively and to distribute water equitably, ensuring allocations to 
small and marginal farmers. Drip irrigation for horticulture crops is promoted. The 
government of Maharashtra further strengthened local bodies during 2005, 
empowering WUAs with full legal authority to manage water distribution, maintain 
irrigation channels, and resolve conflicts. 
Initiated in the 1970s, the Pani Panchayat initiative in Pune district prioritized water in 
the village and restricted the cultivation of water-intensive crops. There are currently 
25 pani panchayat schemes in Maharashtra, based on either a groundwater or 
surface water communal source. Within a pani panchayat village, nearly a third of the 
village land is typically brought under the scheme, which is managed under the 
principles of delinking land and water rights and cultivation of only seasonal crops. 
Hydrological parameters, such as groundwater level or rainfall, are used to assess the 
amount of water that can be used during the year for crop irrigation. These schemes 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Strong Institutional Support for Climate-Resilient Recovery| 44  
have survived several droughts successfully, but more recent evidence suggests that 
some of these initiatives may be endangered by gradual over abstraction in the 
surrounding areas. 
 Sources: TERI (2007), DFID (2005a). 
Approach 3: Prioritized recovery interventions in line with pre-
disaster development initiatives 
Case 25: Social infrastructure development, Chokwe, Mozambique 
The 2000 floods in Mozambique destroyed many existing buildings, many of which 
had been made from traditional materials. In Guevara and Late rural communities 
identified roads and bridges as major priorities in the post-flood recovery in 2000, but 
they also recognized that the areas affected by the floods had been poorly served by 
the social infrastructure, namely the health and education network, even before the 
floods.  The floods were seen by communities as presenting an opportunity to 
integrate a recovery program with social infrastructure development, as these are 
important assets for future development  
Education: During the recovery phase, 2
4
9 new classrooms were built. In total, 101 
schools were rehabilitated and constructed, and equipment for those schools was 
provided. An additional 4,500 children are now attending school in the district. 
Health: Two new health centers were built with prospects for building one more. All 
the damaged health centers were rehabilitated and a new maternity block was built. 
The rural hospital and hospice center were also rehabilitated with recovery funds. 
Source: UNICEF (2000a). Lessons Learned from the Mozambique Floods.
 
Mozambique has one of the lowest literacy rates in the world, and has an extremely 
high infant mortality rate. Mozambique communities readily identified components 
of the social infrastructure as priorities for post-flood recovery, both in cases where 
social infrastructure was destroyed and also in areas where schools and health 
centers had not previously existed. The construction of roads and bridges was carried 
out in coordination with the local and provincial authorities in accordance with 
provincial and district plans. Additional facilities were usually provided as a result of 
the influence of the local district authorities (in the areas of education and health) in 
accordance with previously identified priority areas, and human and financial 
resources were also made available to staff the new facilities. It was clear that this 
was one of the main positive outcomes of the devastating floods. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Strong Institutional Support for Climate-Resilient Recovery| 45  
Approach 4: Climate-resilient recovery through insurance services  
Insurance in a changing climate 
According to the United Nations International Strategy for Disaster Reduction 
(UNISDR), more than three-quarters of recent economic losses can be attributed to 
climate-related hazards. The Intergovernmental Panel on Climate Change (IPCC) has 
also predicted that increasing weather variability due to climate change will make 
matters even worse. 
Financial planning prepares governments for catastrophic climate impacts and main-
tains essential government services in the immediate aftermath of disasters. Pre-ar-
ranged financing arrangements—such as catastrophe reserve funds, contingent lines 
of credit, and catastrophe bonds—allow governments to respond swiftly, scale up 
social protection programs, and avoid longer-term losses that accrue to households 
and communities while people are homeless, out of work, and experiencing basic 
deprivations (Linnerooth-Bayer et al., 2009). Having immediate funds available to 
jump-start the rehabilitation and recovery process reduces the derailing effect of 
disasters on development. 
In Grenada in 2004, for example, the winds of Hurricane Ivan caused losses 
equivalent to more than 200 percent of GDP
Because outside aid is not always 
immediately available, 16 Caribbean countries have developed a well-structured 
financial risk-management scheme to streamline emergency funding and minimize 
service interruptions. In place since 2007, this scheme provides rapid liquidity to 
governments following destructive hurricanes and earthquakes, using innovative 
access to international reinsurance markets that can diversify and offset risk globally. 
Innovations in managing and transferring climate risk in recovery programs are 
considered necessary in order to increase the resilience of agricultural livelihood 
systems. Climate-induced disasters cause direct as well as indirect losses. For example, 
a drought destroys a smallholder farmer’s crops. Not only will he and his family go 
hungry, but if they own plough animals they will be forced to sell or consume them in 
order to survive. These impacts can last for years in the form of diminished 
productive capacity and weakened livelihoods. After the rains return or in the 
following good season, this family will be significantly worse off than before. Under 
the threat of a possible climate shock, people are under pressure to be excessively 
risk-averse. Creditors will not be prepared to lend if drought might result in 
widespread defaults, even if loans can be paid back easily in most years. This critically 
restricts access to agricultural inputs and technologies, such as improved seeds and 
fertilizers. Even though a drought (or flood, or hurricane) may occur only once in five 
years, the threat of the disaster is enough to block economic vitality, growth, and 
wealth generation during all years – good or bad.  
The evidence indicates that extreme climate events are likely to increase in both 
frequency and magnitude over the coming decades. Climate change coupled with 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Strong Institutional Support for Climate-Resilient Recovery| 46  
increased population pressure (the human population is expected to increase by 
more than 50% by mid-century) can result in a worsening of the regional food 
security situation in disaster-stricken areas.  
Weather index insurance (WII) is a financial risk transfer product that has the 
potential to help protect people and livelihoods against disasters induced by climate 
change and variability. WII is linked to a weather index rather than actual crop losses, 
which are typically associated with traditional crop insurance. In the post-disaster 
phase, farmers do not pay much attention to the revival of crops left out in the field, 
as the insurance claim is linked with crop failure. But under WII, the insurance payout 
is not linked to crop failure, beyond an agreed upon threshold point, giving farmers 
the incentive to make the best decisions possible to revive crop survival during the 
post-disaster recovery phase. 
Donor-supported catastrophe insurance is playing an increasingly visible role in 
developing countries. These climate linked insurance programs have the potential to 
ease economic losses and stabilize the incomes of poor people facing weather 
variability and climate extremes by transferring risks to the global capital markets. 
Weather insurance pilot programs are being tried out in India, Mongolia, Mexico, 
Ethiopia, Malawi, and Kenya, insuring small farmers and governments against crop 
failure due to drought. For example, in Malawi, smallholder farmers can now buy 
affordable, index-based drought insurance. Unlike traditional claims-based insurance, 
compensation is based on an index of local rainfall. By making farmers more 
creditworthy, this pilot loan/insurance scheme enables farmers to purchase hybrid 
seeds and thus greatly increases productivity (Hellmuth et. al., 2007). Past experience 
in Ethiopia where insurance payouts go directly to the government, which in turn 
supports the affected farmers, has shown that rainfall data can be reliable enough to 
trigger a payout and private insurance companies have shown an interest in such a 
scheme. Insurance also gives governments an incentive to put into place or update 
contingency plans or other risk reduction measures (WFP, 2006d).  
To insure against insufficient funds for post-disaster relief and infrastructure repair, 
the Mexican government has insured its catastrophe reserve fund, including a 
catastrophe bond, which pays an above-market interest rate if rainfall exceeds a 
specified level, with part of the principal going to the Mexican government if rainfall is 
below this level. 
The Caribbean island states have recently formed the world’s first multi-country, 
index-based catastrophic insurance pool to provide governments with immediate 
liquidity in the aftermath of hurricanes or earthquakes. 
Case 26: Catastrophe risk insurance facility: Caribbean community governments 
Among the many challenges facing the governments of small island states in the 
aftermath of a  natural disaster, the most urgent is obtaining access to cash to 
implement urgent recovery efforts and maintain essential government services. This 
challenge is particularly acute for Caribbean countries, whose economic resilience is 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Strong Institutional Support for Climate-Resilient Recovery| 47  
limited by mounting vulnerability and high indebtedness.  
The new Caribbean Catastrophe Risk Insurance Facility (CCRIF) provides Caribbean 
community governments with an insurance instrument akin to business interruption 
insurance. It furnishes short-term liquidity if they suffer catastrophic losses from a 
hurricane or earthquake.  
A wide range of instruments exists to finance long-term recovery, but this facility fills 
a gap in financing short-term needs through parametric insurance. It disburses funds 
based on the occurrence of a predefined event of a particular intensity, without 
having to wait for onsite loss assessments and formal confirmations. This type of 
insurance is generally less expensive and settles claims quickly, because measuring 
the strength of an event is almost instantaneous. The facility allows participating 
countries to pool their individual risks into one better-diversified portfolio and 
facilitates access to the reinsurance market, further spreading risks outside the 
region. Such insurance mechanisms should be part of a comprehensive financial 
strategy using an array of instruments to cover different types of events and 
probabilities. 
Sources: Ghesquiere, Jamin, and Mahul (2006), World Bank (2008e). 
Many small countries are financially more vulnerable to catastrophic events because 
of the magnitude of disaster-related losses relative to the size of their economies). 
Donor aid is an invaluable component of post-disaster recovery, but external aid may 
not be sustainable in climate change scenarios characterized by the escalation of 
extreme events. In turn, external investors are wary of the risk of disastrous 
infrastructure losses, while small firms and farmers cannot access the credit 
necessary for investing in higher-yield/higher-risk activities. This leads to slowed 
economic recovery and prolonged poverty. Insurance mechanisms, when applied as 
part of a broader climate change risk-management strategy, may be a powerful tool 
to help avoid or minimize human and economic losses following environmental 
catastrophes. However, insurance will not necessarily be appropriate for slow-onset 
climate impacts, such as sea-level rise and desertification. 
A Climate Insurance Assistance Facility would enable mainly micro-scale risk pooling 
and transfer mechanisms that provide coverage for medium-loss events (e.g., a 1-in-
50 year event). This would provide direct insurance to households, farmers, or 
governments, and would offer support to nascent micro-, meso-, and macro-scale 
disaster insurance systems, like those operating in Malawi and the Caribbean. If 
tested and found viable across the continents, in the long run, these approaches 
would drastically change the way development organizations provide post-disaster 
recovery assistance and support adaptation to climate change. 
 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Strong Institutional Support for Climate-Resilient Recovery| 48  
Case 27: Weather-indexed insurance for agriculture in Andhra Pradesh, India     
The insurance company ICICI Lombard, in collaboration with the Hyderabad-based 
microfinance institution BASIX, piloted a rainfall-indexed insurance program to protect 
farmers from drought during the groundnut and castor growing season. This was the 
first weather insurance initiative in the developing world. Insurance was sold to 230 
farmers, mostly small, in Mahabubnagar district, Andhra Pradesh, in 2003. In 2004, the 
program was significantly modified in terms of geography, product design, and scope, 
and was further improved in 2005 by adding new features recommended by farmers. 
Within three years, the small pilot program had expanded into a large-scale operation 
in which 7,685 policies were sold in 36 locations in six states. Similar products are also 
being offered by the Agricultural Insurance Company of India, and the scheme has 
achieved widespread acceptance among the farmers. 
Weather-indexed insurance is less susceptible to the problems intrinsic to traditional 
multi-peril crop insurance. The publicly available weather indicators are easily 
measured and transparent and the automatic trigger and low-cost weather-monitoring 
stations reduce the insurer's administrative costs, which in turn makes products more 
affordable to farmers. Moreover, the exogenous nature of the weather indicators 
helps prevent both adverse selection and moral hazards. 
A major challenge in designing weather-indexed insurance is minimizing basis risk: the 
potential mismatch between payouts and actual losses. Since indemnities are triggered 
by weather variables, policy holders may experience yield loss in specific locations and 
not receive payments. Some farmers may be paid without losses. The effectiveness 
depends on how well farm yield losses are captured by the index used. Weather 
insurance contracts essentially trade in the basis risks for transaction costs, and the 
insurance will not be attractive if the basis risk becomes too high. A low correlation 
between yield and rainfall projected by the EPIC agronomic model for the study 
districts suggests that the implementation o f rainfall index insurance may encounter 
future difficulties. 
Sources: World Bank (2005b), Skees, Hazell, and Miranda (1999), Hess (2003). 
Case 28: Index-based insurance in Bolivia, Fondo de Mitigación del Riesgo Agrícola Bolivia  
Fundación PRO FIN has developed an innovative, index-based insurance scheme that is 
being piloted in four provinces in Bolivia. It combines incentives for risk reduction and a 
flexible, people-centered index mechanism. In this scheme, the trigger is based on the 
production levels of reference farming plots in areas that are geographically similar in 
terms of temperature, precipitation, humidity, and type of soil. Farmers identified as 
good practitioners, by their peers, farm the reference plots. The scheme is based on 
the fact that these farmers have established reputations within their communities for 
their skills and knowledge and that the yields on their plots can serve as reliable 
indicators of whether production levels have been adversely affected by 
environmental factors (thus triggering an insurance payout) or by other factors within a 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Strong Institutional Support for Climate-Resilient Recovery| 49  
farmer’s control. This reduces the moral hazard in the scheme, and the reference 
farmers also serve as technical assistance agents to promote ideas for increasing yields 
and reducing disaster risks and impacts. 
The system encourages other farmers to match the reference farmers in implementing 
efforts to reduce the effects of drought, excess rains, hailstorms, and frost, lest those 
farmers run the risk of having their own plots affected significantly more than the 
reference farmers’ plots. 
Source: Fondo de Mitigación del Riesgo Agrícola, at www.fundacion-profin.org/fmra.html. 
Case 29: Mangrove rehabilitation and livelihood program in Banda Aceh, Indonesia 
On December 26, 2004 an earthquake in the Indian Ocean unleashed a tsunami that 
caused the deaths of approximately 280,000 people, leaving many survivors in 
absolute devastation. Tibang is a village in Banda Aceh, less than one kilometer away 
from the coast. Only 40% of its population survived the tsunami, leaving approximately 
800 survivors (Farhan, personal communication, 2006). Many have returned to the 
village, but some survivors were carried away from Tibang by the waves and remain in 
barracks scattered throughout the city. Family structures collapsed, killing parents, 
children, and siblings,and  livelihoods disappeared as the tsunami washed away 
Tibang’s fish and shrimp ponds, the village’s major source of revenue. 
The Coastal Rehabilitation and Livelihood Program in Banda Aceh incorporates various 
components of sustainability through mangrove rehabilitation and the development of 
a microenterprise, Tibang Products. Mangroves promote biodiversity by acting as a 
nursery for juvenile fish and aquatic invertebrate species (Adeel and Pomeroy, 2001). 
This gives mangroves environmental value, as well as economic value. The livelihoods 
of the villagers, particularly the women, depend on the collection and sale of crab, 
shrimp, fish, and oysters  (the latter attach and live on the roots of mangrove trees). 
Mangroves also are significant because they protect coastal communities from storm 
surges, coastal erosion, and flooding (Barbier, Acreman, and Knowler, 1997; Ellison, 
2000). The microenterprise is an initiative designed to rebuild livelihoods for women by 
providing skills training and access to potential job opportunities, and to create a 
revenue stream to support the ongoing maintenance of the mangroves. Although the 
tsunami was not a result of climate change, it is expected that more intense 
precipitation events and tropical cyclones are likely to occur due to climate change and 
may result in the devastation of coastal areas similar to that caused by  the tsunami 
(Schneider, Rosencranz, and Niles, 2002). Therefore, the results from the thesis on 
which this paper is based can contribute to discussions about the design of future 
natural or man-made disaster recovery programs. 
The Coastal Rehabilitation and Livelihood Program is the only mangrove program in the 
area that incorporates economic development and long-term plans for beneficiaries. 
The program has helped empower the women involved by presenting them with 
career opportunities that were unknown or unavailable to them before the tsunami, 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Strong Institutional Support for Climate-Resilient Recovery| 50  
enhancing their skills, and creating a social network among them. These results suggest 
that the continued commitment of women to the program may be connected to the 
empowerment they feel as a result of the program. 
x  Disasters provide an opportunity for change, and the concept of sustainable 
development should be incorporated into the rebuilding of stronger 
communities, so that they are better protected from future disasters. 
x  Recovery is complex and requires patience, but by balancing the social, 
economic, and environmental aspects of a system, it can be accomplished. 
Suggested web resources:  
http://portal.iri.columbia.edu/portal/server.pt?space=CommunityPage&control=SetC
ommunity&CommunityID=684&PageID=0

http://environment.tufts.edu/downloads/NicoleGuanzon.pdf   
Approach 5: Post-recovery risk reduction strategies with respect to 
climate change 
While the actual hazards are expected to increase in frequency and intensity due to 
climate change, many improvements have occurred in the risk management and risk 
reduction strategies adopted by national governments. It is hard to get ahead when 
recurring disasters set back infrastructure and livelihoods time and again. For 
example, infrastructure that cannot be adapted to withstand the impacts of climate 
change may expose more people to risk. Mainstreaming climate concerns into capital 
investment plans entails integrating climate issues and adaptation priorities into 
national strategies. Improvements are seen in recovery operations when 
environmental considerations are explicitly included in measures to protect 
riverbanks and coastal areas through local participation and when there is recognition 
that risk reduction in recovery is very much a part of the development continuum. 
Case 30: Risk Reduction Measures in recovery in the Maldives 
Although the Maldives had not been routinely subjected to major disaster threats in 
recent memory, the inundation of the entire country by the Indian Ocean Tsunami 
highlighted the country's vulnerability to natural hazards. Because the Maldives is a 
small country of 1,192 widely distributed islands and atolls with a maximum elevation 
of only 1.5 meter above sea level, post-tsunami recovery was an important opportunity 
for that country. It provided an unprecedented chance for the government to 
recognize  its exposure to disaster risks and to raise disaster awareness among its 
people. This provided the impetus to address disaster risk reduction issues by 
introducing a coordinated tsunami risk reduction and recovery program with several 
related features. Several lessons were learned in this process. 
Initial government plans aimed to relocate people to some of the larger islands in the 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Strong Institutional Support for Climate-Resilient Recovery| 51  
belief that this could provide residents with more rapid access to safer places in times 
of emergency. However, while this was seen as a solution for particularly vulnerable 
settlements, communities here, as in other countries, were unwilling to move. 
An institutional policy framework for disaster management was created, comprising a 
legal foundation, well defined organizational responsibilities,  and a strengthened 
Disaster Management Center. The strategy studied the disaster risk profile of the 
country and then designed multi-hazard preparedness and response plans for 
implementation at all levels. An early warning system was established throughout the 
country, and both national and regional Emergency Operational Centers were created. 
Efforts to raise public awareness and engage in training and capacity building were 
pursued to help contribute to a sustained interest in disaster reduction. 
In considering their defining island and marine environment, government authorities 
sought to adopt structural measures that could provide safer island habitats for 
residents. These included altering the physical features of some islands by reclaiming 
land, elevating some areas for added protection, and creating wider or more numerous 
environmental protection zones. Elsewhere easier access to emergency facilities was 
created. However, the government found that reclaiming land or creating elevated 
areas were very expensive solutions that also required a high level of technical support 
that could not be sustained. 
Throughout the housing reconstruction and repair process, an approach to "build back 
better" was adopted, emphasizing stronger and safer construction methods. Although 
there was a need for housing that had to be met at the time, the massive 
reconstruction also caused an acute shortage of building materials, resulting in high 
prices of all materials. 
Lesson 
x  In order for Maldives to progress with sustainable development, climate 
resilient adaptation towards disaster risk management and reduction simply 
cannot be left out of long-term planning. Thus, any opportunity created during 
recovery to build back safer, greener, and better should not be passed up. 
Risk reduction through climate-resilient livelihood adaptation  
Low-lying coastal areas and deltas are highly vulnerable to sea-level rise, extreme 
weather events, and storm surges. Each coastal area faces different circumstances 
with regard to such factors as climate, population density, natural resources, 
infrastructure, economy, and governance. In the aftermath of a disaster, new 
dimensions will be added to this list. So the recovery responses to disaster ‘x’ in the 
context of climate change issues may vary. Coastal adaptations must be tailored to 
the local context through an inclusive process that matches development goals with 
the climate change issues, local capabilities, and the capacity of the community's 
institutions and community stakeholders. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Strong Institutional Support for Climate-Resilient Recovery| 52  
Recovery offers opportunities to improve the mainstreaming of risk reduction 
approaches in sustainable livelihood development in many disaster-prone areas, such 
as coastal Bangladesh, West Bengal, Orissa, and Andhra Pradesh. 
Case 31: Saline Water Intrusion Compel Livelihood Shift from Agriculture to Fisheries in Sundarbans, 
Bangladesh  
The residents of Subarnabad, Bangladesh are resourceful people, having adopted an 
array of measures to cope with saltwater intrusion. When shrimp farming was initially 
introduced to the area, this offered new livelihood opportunities. The large landowners 
saw it as a means to increase their profits. Better-off groups were still adversely 
affected by the changes, but they had more capacity to take advantage of those 
changes and more resources to protect themselves from stressful conditions. However, 
small landowners and other poor and disadvantaged groups could not benefit from the 
new conditions. The adaptive strategies employed to cope with saline water intrusion 
were mainly autonomous and often risky and short term, including borrowing money, 
selling land, migrating, forcing women and children to earn wages, decreasing food 
intake, working outside the village, using fertilizers, selling livestock, raising goats 
instead of cattle, theft,  and prostitution. These adaptation initiatives addressed 
immediate needs, but did not generally improve people’s adaptive capacities. Poverty 
and little or no access to fertile agricultural land limited economic opportunities 
outside of the shrimp industry, often preventing the pursuit of alternative livelihoods.  
The Institute of Development Education for the Advancement of the Landless (IDEAL) 
and CARE Canada/Bangladesh worked directly with poor rural villagers for the broad 
purposes of environmental conservation and the promotion of caste, class, and gender 
equity. They promoted new hazard/saline-resilient livelihood strategies for income and 
food generation, including goat, duck, and hen rearing, chicken and crab farming, tree 
planting,  the introduction of saltwater-tolerant vegetable gardens, and handicraft 
production. Villagers were provided with access to loans, a savings bank, and training 
and technical support for new livelihood strategies. The success of the adaptation 
strategies also led other residents to be willing to take the risk of trying new activities 
which they had once deemed too risky.  
Promoting initiatives that enhance and diversify livelihoods may be seen as ‘business-
as-usual’ in the field of development, but these initiatives are less common in the 
climate change field. By addressing local vulnerabilities and concerns, and building 
capacities in a broad sense, these initiatives can provide practical, effective,  and 
contextually-relevant ways to decrease vulnerability and facilitate adaptation to 
climate change within the context of ongoing development processes.  
Source: 
www.preventionweb.net/files/9739_tiempo59low.pdf
 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Strong Institutional Support for Climate-Resilient Recovery| 53  
Approach 6: Zonation and Land Use Planning as a risk reduction 
approach to deal with adverse effects of climate change  
There is a strong link between land cover and climate; thus, changes in land use and 
land cover can be important contributors to climate change and variability, while a 
changing climate can in turn affect future land use and land cover. A key challenge for 
decision makers, policy makers, and development partners is to understand the 
strategies adopted by farmers and other stakeholders in their efforts to address 
climate change-induced land degradation. The poorest of the poor, marginal and 
small farm holders are more dependent on their land and ecological services. They 
are also the most vulnerable to climate change, and they have no alternative but to 
adapt their livelihood systems to changing climatic conditions. 
Vast sections of land are currently under threat due to increasing human population 
and agricultural expansion. Following a major disaster in these areas the recovery 
programme usually applies a protective strategy (such as building dikes & levees or 
sea-walls) and/or a retreat strategy (such as establishment of set-back zones or 
relocating threatened buildings) in the flood / cyclone prone areas and coastal areas. 
To adapt to the new situation arising from climate change, existing zoning regulations 
could be modified to consider the future impacts from a rising sea level. A successful 
adaptation strategy may include increasing society’s ability to cope with the effects of 
disaster, e.g. emergency plans, insurance, modification of land use and agricultural 
practices.   
Approach 7: Managing climate risk: Incorporating climate 
information into decision-making  
When adaptation efforts focus more specifically on hazards and impacts, an 
important framework for action is provided by the concept of climate risk 
management (CRM). CRM refers to the process of incorporating climate information 
into decisions to reduce negative changes to resources and livelihoods. This 
framework accommodates the fact that often the effects of anthropogenic climate 
change are not easily distinguished from the effects of events and trends within the 
historic range of climate variability. The CRM approach encourages managing current 
climate-related risks as a basis for managing more complex, longer-term risks 
associated with climate change. Use of climate information distinguishes the CRM 
approach from typical development efforts, though the success of CRM may have 
strong development implications and vice-versa. Many disaster-response planning 
activities fall into the CRM category, as do many technological approaches (e.g., 
drought-resistant crops). Climate-proofing projects most often fall into this category, 
though many discrete adaptation projects also focus on CRM. In the dry lands of 
Kenya, a CRM approach is being used to prepare for future droughts, which are 
expected to intensify as the climate changes. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Strong Institutional Support for Climate-Resilient Recovery| 54  
Case 32: Managing Climate Risk in Rural Kenya 
Home to 10 million people, Kenya’s arid and semi-arid lands have the lowest 
development indicators and highest incidence of poverty in the country. Over 60% of 
inhabitants currently live below the poverty line. Increasing population pressures, 
overgrazing, crop reduction in fallow fields, and recurring conflicts between pastoralists 
and farmers all pose serious development challenges. These will be exacerbated by 
climate change, which is expected to cause both floods and droughts to increase in 
frequency and severity. In response to the devastating effects of past droughts—and 
the prospect of more as climate change intensifies—the Center for Science and 
Technology Innovations has partnered with the Arid Lands Resource Management 
Project to work with communities in the Makueni District in introducing a suite of 
measures to reduce vulnerability to climate change. Climate and weather forecasts are 
being downscaled and communicated to farmers to help them select appropriate 
planting times. Local production systems are being diversified through the use of 
drought-tolerant crop varieties and better systems for collecting and storing seeds. 
Farmers have been trained in soil and water conservation, weather prediction and 
interpretation, the selection of seeds to fit climatic and land conditions, and early land 
preparation and planting. Technologies such as sand dams and drip irrigation have also 
been introduced to improve access to water. 
Credit systems are being strengthened, allowing community members to pursue 
diversified or alternative livelihood activities. Taken together, these interventions 
represent a climate risk management approach to development. Historical, current, 
and future climate information has been used to understand vulnerability to drought 
and to devise strategies to decrease it. Specifically, information on the effects of past 
droughts has highlighted where livelihood systems fall short and where greater 
capacity is needed. Access to current and seasonal weather forecasts allows farmers to 
make more informed decisions that reduce their exposure to short-term climate risk. 
Knowledge of longer-term trends associated with climate change encourages them to 
think about how decisions and investments made today will stand up to even drier and 
more variable conditions tomorrow. Selecting seeds that are appropriate for the 
expected climatic conditions further safeguards against drought. Through better access 
to and understanding of climate information, these communities have improved their 
understanding of future conditions, are able to implement agronomic practices based 
upon this knowledge, and thus have increased their capacity to adapt to climate 
change. 
Source: WRI. 
The success of CRM depends heavily upon the availability of climate information, and 
is enhanced when climate change predictions can be made with relatively high 
certainty and precision. If adaptation initiatives are too concretely based on risk 
assessments turn out later to have been inaccurate, investments may be wasted, and 
mal-adaptation could result. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Strong Institutional Support for Climate-Resilient Recovery| 55  
Approach 8: Responding to Climate Change 
The adaptation actions discussed in this review focus almost exclusively on 
addressing impacts associated with climate change. Normally, these actions target 
climate risks that are clearly outside of historic climate variability, and have little 
bearing on risks that stem from anything other than anthropogenic climate change. 
For example, communities that relocate in response to sea-level rise mainly fall into 
this category. Other examples of adaptations to observed changes in climate include 
partial drainage of the Tsho Rolpa glacial lake (Nepal), as do many responses to glacial 
melting. Far-reaching technological approaches that address unprecedented levels of 
climate risk also belong in the highly targeted category.  
Because measures that are highly targeted at climate change impacts do not address 
non-climate change challenges, they tend to require new approaches that fall outside 
of the relatively well-understood set of practices that might be considered part of the 
development “comfort zone” (Mcgray et. al, 2007). This level of innovation usually 
takes the form of a discrete effort, and is often both costly and fundamentally 
challenging to cultural and political norms. After all, even with the clearest, most 
certain climate predictions in hand, it isn’t easy to decide to leave the island where 
your family has lived for generations, or to accept that the land your community has 
farmed for centuries is becoming too dry to sustain agriculture. Moreover, initiatives 
that relocate whole groups of people or that launch large, untested engineering 
endeavors come with large price tags that require a high level of political will. 
As such, many measures in this continuum take on an extreme or “last-ditch” quality, 
and many people, quite rightly, wish to avoid them. This is one reason we see so few 
activities from this category in our set of examples. A more important reason, 
however, is that at least at the moment it is difficult to distinguish climate change 
effects from “normal” climate variability. Therefore, we see more adaptation 
approaches that address climate change and other sources of risk together using a 
CRM approach (see above). Given the current state of climate change, high-impacts-
targeted activities also require long-term planning, since the most clearly 
distinguishable impacts of climate change are still years or decades from being felt in 
many places. 
However, it is also clear that the need for high-impacts-targeted climate change 
action can in many cases be reduced by the success of other types of adaptation 
efforts, and by work to stabilize greenhouse gas concentrations in the atmosphere. 
We can think of the boundary on the continuum between "managing" climate risk 
and "confronting" climate change as a threshold that moves right if greenhouse gas 
mitigation and climate adaptation are successful, shrinking the scope of impacts-
targeted action needed. To the extent that climate adaptation and greenhouse gas 
mitigation fail, the threshold moves left, expanding the scope of impacts-targeted 
activity, since the direct effects of climate change will be felt more directly by more 
people. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Strong Institutional Support for Climate-Resilient Recovery| 56  
This is not to say that climate change-specific action can be avoided entirely. Science 
shows us with increasing precision that we are already “committed” to a certain 
amount of global warming, which has direct implications for many people in many 
places. Places such as Nepal (Case 34) are moving forward with proactive planning for 
some specific eventualities. That these instances remain relatively few indicates that 
society will need more than climate predictions to prompt proactive planning for 
those consequences of climate change that will be most unique and potentially most 
difficult to address. 
Case 33: Adaptations to Observed Changes in Climate: Reducing Risks of Glacial Lake Outburst through 
Partial Drainage of the Tsho Rolpa Glacial Lake (Nepal) 
As the earth warms, mountain glaciers are melting. The melted water pools behind 
unstable natural dams, which are formed of moraine, the sediment that glaciers carve 
out of the mountains as they move. Glacial lakes have existed as long as there have 
been glaciers, but with climate change, the volume of water stored in these lakes is 
growing. This heightens the risk of the moraine dams being breached, suddenly 
releasing huge volumes of water downstream. In August 1985, an avalanche dumped 
tons of ice into the Dig Tsho glacial lake in eastern Nepal. The resulting 5 m wave 
overtopped the moraine dam and released a flood that destroyed homes, bridges, 
farmland, and a nearly completed hydropower plant. 
The glacial lake was drained within six hours. Four or five deaths resulted from this 
event—a figure that could have been much higher had the flood occurred during the 
height of the tourist season. The risk of another Dig Tsho-type outburst flood is 
growing, as temperature increases at high altitudes in the Himalayas correlate with 
increasing glacial lake volumes. A 2001 inventory carried out by the United Nations 
Environment Program and the International Center for Integrated Mountain 
Development identified 20 sites at risk in Nepal. Among the most dangerous sites is the 
Tsho Rolpa glacial lake, situated 4,580 m above sea level and fed by the rapidly 
retreating  Tradkarding glacier. The glacial lake grew from an area of 0.23 km² in the 
late 1950s to 1.65 km² in 1997. At this size, the lake stored 90–100 million cubic meters 
(m³) of water, at least a third of which would be released downstream if the 150-m-tall 
moraine dam were breached. Recognizing the risks posed by this high-altitude 
warming and lake expansion to rural communities and infrastructure, such as the 
Khimiti hydropower plant, the government of Nepal initiated a project in 1998 to drain 
down the Tsho Rolpa glacial lake. An expert group recommended cutting a channel 
into the moraine to reduce lake levels by 3 m, which was expected to reduce outburst 
flood risk by 20%. This measure was carried out in conjunction with the establishment 
of early-warning systems in 19 downstream villages. However, experts are warning 
that total outburst flood prevention will require a further draining of as much as 17 
m—a costly endeavor. Nevertheless, the initial step toward reducing glacial lake 
outburst flood risk in Nepal provides an example of anticipatory development planning 
that targets a clear impact of climate change. 
Source: WRI (2007).
 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Strong Institutional Support for Climate-Resilient Recovery| 57  
Lessons 
x  The relocation of a population seldom represents a long-term viable option, 
and is generally contrary to people's wishes or commitment. 
x  The use of existing natural resources and environmental conditions can be a 
useful means of reducing disaster risks, but careful consideration is required 
before projects embark on a major alteration of natural forms. 
x  It is important to assess the adequacy of the supply of materials and the 
availability of labor and skills before embarking on large building programs to 
ensure that the program is sustainable. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E  
Community-based Approaches| 58  
 
 
Community-based 
Approaches 
Approach 1: Preparing communities for 
climate-resilient recovery  
The Community-Based Adaptation (CBA) Program, a GEF funded initiative, provides 
capacity building for adaptation planning through community level consultations in a 
number of countries such as Bangladesh, Bolivia, Niger, Samoa, Guatemala, Jamaica, 
Kazakhstan, Morocco, Namibia, and Vietnam. In the future it is expected that these 
people will be affected by cyclones, floods, and droughts more frequently and 
intensely as a result of adverse climate changes. Past experience has shown clearly 
that villagers are willingly and voluntarily collaborating to develop and apply 
adaptation measures by contributing their time and resources (Francisco, 2008). This 
kind of risk-sharing practice constitutes a community-based adaptation activity, one 
example of which is an adaptation project implemented in the Thua Thien Hue 
Province of Vietnam. Similar types of recovery projects and practices that focus on 
climate change adaptation should be tried in other countries trying to implement 
post-flood recovery initiatives and to reduce the vulnerability of communities. For 
example, in Cox Bazar, Bangladesh, when women became fully involved in disaster 
preparedness for cyclones, as well as other post-disaster rehabilitation and recovery 
activities such as education, reproductive health, self-help groups, and small and 
medium-sized enterprises, the number of women killed or affected by cyclones fell 
dramatically (IFRC-RCS 2002 in Sperling, 2003). 
Case 34: Community-Based Adaptation to Climate Change in Vietnam 
This project was implemented in four communes and eight villages in Quang Dien and 
Phu Vang Districts, Thua Thien Hue Province, in the north–central coast of Vietnam in 
2002. These villages experience about 30 days of flooding each year. In 1999, one of 
the worst floods resulted in the loss of hundreds of lives, along with property 
destruction and other economic losses. This severe incident attracted international 
support for the government of Vietnam. During the relief operations, an initiative was 
launched to promote “capacity building for adaptation to climate change.” The main 
objective was to help build adaptive strategies to enable communities to deal with 
recurrent climatic catastrophes and to minimize the loss of lives and property. This 
process involves three major steps for each participating community: 
Chapter 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Community-based Approaches| 59  
1.
  Scenario building includes identifying and analyzing the hazards, vulnerability to 
climate change, and existing and required adaptive capacity of the respective 
village. Interviews, focus group discussions, field surveys, historical profiling, and 
mapping of vulnerable sites are some of the methods used to describe the current 
situation and future scenarios related to climate change. Adaptation mechanisms 
at the household and community levels, as well as social institutions that could 
contribute to hazard and disaster management strategies are identified at this 
stage. 
2.
  Planning involves discussions among the leaders of social groups or organizations, 
such as those for farmers, fishers, women, youth, and other village political 
associations. Deliberations on threats and potential impacts arising from climate 
change and possible measures to address these issues are carried out at this stage. 
These measures can be livelihood improvements in agriculture and aquaculture, 
disaster management protocols, and other strategies. The participation of local 
government officials is critical during this process to ensure acceptance and 
implementation of the plan at the community and district levels, as well as to 
increase the likelihood that the government will co-fund some of the subprojects 
identified. The main output at this stage is a “safer village plan” that will increase 
the resilience of the community to the negative impacts of climate change. 
3.
  Project implementation of some subprojects identified in the plan is made possible 
through in-kind and cash contributions to the community’s adaptation funds. 
These subprojects involve measures to ensure the safety of the people, 
infrastructure, and livelihoods of the village. Construction of an inter-community 
road and multipurpose school (as an emergency shelter), as well as technical 
support for agriculture and fisheries are provided. Training on the use of early 
warning devices, and rescue and relief operations are extended to representatives 
of various social groups. Critical equipment in giving timely warnings of impending 
disasters, including boats, life jackets, and megaphones, are made available to 
representatives of the social groups. 
Source: Francisco (2008). 
From a country perspective, community-based approaches provide the most 
effective capacity building for practical adaptation actions through implementation 
and a ‘learning by doing’ process. Community-based adaptation is an important tool 
for developing adaptation options and it is important to share the knowledge gained 
from these experiences. 
Case 35: Recovery support for communities through drought-resilient recovery in Andhra Pradesh 
The  government of Andhra Pradesh assigns a high priority and commitment to 
strengthening development outcomes, as indicated by its support for  robust relief 
machinery and recent strategies to build long-term resilience to climate risks among 
rural communities. Under the oversight of the Department of Rural Development, 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Community-based Approaches| 60  
the state is implementing an innovative drought adaptation pilot initiative in dryland 
areas of  Mahabubnagar and Anantapur districts by the Society for the Elimination of 
Rural Poverty and the Watershed Support Services and Activities Network. A state 
government interdepartmental steering committee and a convergence committee 
comprised of the commissioner for rural development and representatives of the 
National Rural Employment Guarantee Scheme have been set up to oversee project 
implementation. The initiative, which will be implemented over a period of three 
years with technical assistance from the World Bank, seeks to:  
a.
  Identify gaps and missing links in the ongoing drought-related programs and 
activities in Andhra Pradesh;  
b.
  Facilitate institutional integration at the state, district, and community levels for 
delivering drought-related assistance;  
c.
  Design and test innovative methods and instruments for helping selected 
communities adapt to drought, targeting different groups within these 
communities; and  
d.
  Improve awareness of drought adaptation options and approaches, and 
disseminate the results of the pilot efforts to build support and demand for 
wider replication. 
The  pilot  Drought Adaptation Initiative focuses its resources on four areas of 
intervention:  
a.
  Management of common natural resources, dealing with pro-poor water 
resource (particular groundwater) and common land management;  
b.
  Production systems, focusing on diversification and intensification in agriculture, 
livestock, and horticulture, with technological innovations; 
c.
  Economic instruments and marketing, with a focus on improved access to 
markets, credit, and insurance for new and innovative activities specifically 
designed for drought adaptation; and  
d.
  Institutional support and capacity building, with a focus on institutional 
strengthening of farmers and other villager organizations, including such 
community-based organizations as self-help groups, watershed committees, and 
credit committees.  
Pending successful outcomes, the pilot is expected to build support and demand for 
wider replication in Andhra Pradesh and to provide lessons to other semiarid states. 
Source: World Bank (2008). 
Case 36: Managing drought through rainwater harvesting initiatives in Gujarat  
An analysis of past rainfall data for the state of Gujarat indicates that in the last two 
decades, the intensity of the three-year periods of consecutive rainfall decreases is 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Community-based Approaches| 61  
increasing, thus creating a severe drought situation. The intensity and return period of 
major drought events have increased substantially in last two to three decades, and 
these are often correlated to climate change impacts. However, climate model 
predictions indicate a general increase in rainfall over the western part of India with 
more intense rain events in future. While the increased rainfall is a welcome 
development to this drought-stricken part of the country, an increase in the intensity of 
rainfall might lead to high surface runoff and a loss of water from the region.  
To promote sustainable methods of rainwater harvesting techniques, SEEDS 
(Sustainable Environment and Ecological Development Society, an  NGO) decided to 
test and promote activities involving the collection of rooftop rainwater and the 
recharging of underground water. Based on this survey, as well as on existing village 
data and focus group discussions, two villages in Porbandar, Thoyona and Digvijaygadh, 
were selected. Thoyona especially suffers from irregular availability of irrigation water 
while Digvijaygadh has a drinking water problem. SEEDS promotes sustainable 
methods of rainwater harvesting techniques, which are designed, maintained,  and 
managed by the local communities. Therefore, it was decided that the following 
activities would be promoted:  
1.
  Rooftop rainwater harvesting at a school building in Digvijaygadh  
2.
  Well recharging structure and farm ponds in Thoyona  
3.
  Training of communities in water conservation and harvesting. 
Rooftop Rainwater Harvesting at a School Building in Digvijaygadh   
District: Porbandar ; Taluka (Block): Ranavav ; Village: Digvijaygadh Digvijaygadh is a 
working  class village with around 70 households from the Sager and Rabari 
community. It is socially and economically under developed. Once a village with good 
farms, the community has been reduced to a working class community due to the 
degradation of natural resources. A local NGO, SEEDS, enabled the village community 
to formulate their own water model plan that was implemented for their village based 
on their needs. The villagers could not contribute financially, but they contributed by 
providing  labor, transportation, water from wells, and water curing services. Most 
importantly, they were able to participate in the program right from the start, from the 
identification of need and resource mobilization to implementation. Some of the 
villagers have also shown an interest in how the water of the village might be collected 
collectively. 
SEEDS began by organizing community meeting and holding focus group discussions, 
and these were followed by community mobilization. After community members were 
mobilized, training as well as small-scale workshops with participants were conducted 
during the implementation process. 
Source: SEEDS (2004). 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Community-based Approaches| 62  
Case 37: Community-based drought-proof livelihood initiatives:  Kutch, Gujarat 
The district of Kutch, which comprises 24% of the total area of the State of Gujarat, 
falls in the arid tracts of the country and has a unique arid coastal climate. While 
Kutch has always been a drought-prone region, the incidence of drought has become 
more regular, with any five-year cycle including two to three years of drought. 
The Kutch Nav Nirman Abhiyan, Nehru Foundation for Development introduced two 
initiatives to play a role in drought recovery. The first initiative is called the Drought-
Proofing Program which creates local dams to decentralize rural drinking water and 
sanitation, and to secure water for periods of drought. The second initiative focuses 
on livelihood options. Since Kutch has traditionally been well-known for its 
handcrafts, Abhiyan supports local people engaged in handicraft work, especially 
women, to create expanded livelihood options.  
One of the first steps in the Kutch livelihood program is identifying the local resource 
base, that is, the skills, raw materials, traditional knowledge, aptitudes, and interests 
of local people. Since Kutch is one of the most craft-rich areas in the country, the 
handicraft industry has become the most visibly identified area of livelihood 
generation. The various crafts practiced include weaving, ajrakh  block printing, tie-
dye, pottery, leather working, bell making, knife making, silver and gold jewelry, and 
rogan  art . However, to initiate craft programs, without a comprehensive 
understanding of the complexity of a craft in an artisan's lives, the very niche markets 
of the handicraft industry, craft designs, and the craft market, means that the 
initiating organization immediately runs into its first and primary problem – that of 
having  heightened the expectations of artisans before developing the marketing 
chain. More problems ensue related to quality, markets, unsold stocks of product 
generated in the initial enthusiasm to help, and blockages  to the flow of funds. Crafts 
activities force NGOs to undertake the difficult and complex task of walking the line 
between the socio-economic developmental needs of the community, the arena of 
arts and crafts, and the world of business. 
Lesson 
x  Innovative approaches at the local level, when planned properly and linked 
to local government programs and policies, can lead to successful mitigation 
measures that can be effective in the long run. As a result of these initiatives, 
though they differed in their specific focus as mentioned above, all these 
targeted communities were able see the advantages of implementing 
measures that support their livelihood. The significance of these initiatives 
lies not only in their physical results, but also in their promotion of 
participation by local people and their utilization of local knowledge (Shaw et 
al., 2005).  
 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Community-based Approaches| 63  
Relevance of contemporary rainwater harvesting to climate change 
History tells us that cultures who have occupied an area for a long period do not give 
up until they have exhausted all their options for survival in that area. Rather than 
migration, people may resort to modifying their residential environments by adapting 
strategies to optimize the utility of available water by harvesting rain (Pandey et al., 
2003). A comprehensive knowledge of climate fluctuations and corresponding 
adaptation by human society is crucial for our progress towards sustainability. Where 
the seasonal cycle of rainfall is large, adaptation through rainwater collection may be 
particularly effective in tropical monsoon regions. 
As the climate changes, people may resort to harvesting rainwater. As a sound 
adaptation, why does rainwater harvesting matter more today than any other time in 
the Holocene? There are several reasons: 
1.
  More than one billion people currently lack access to clean drinking water and 
almost 3 billion people lack basic sanitation services;  
2.
  The human population will grow faster than increases in the amount of 
accessible fresh water, causing the per capita availability of freshwater to 
decrease in the coming century; 
3.
  Climate change will cause a general intensification of the earth’s hydrological 
cycle in the next 100 years, with generally increased precipitation, evapo-
transpiration, occurrence of storms, and significant changes in biogeochemical 
processes influencing water quality.  
As summers get hotter and hotter, and anthropogenic climate changes exert further 
strain on economic, social, and natural systems water scarcity is likely to grow in India 
and elsewhere. Addressing water problems holds the promise of the future for a 
world impacted by the compound effects of climate change, population growth, and 
a decrease in the water-impounding area of traditional tanks due to urbanization. 
Rural and urban water use, the restoration of streams for recreation, freshwater 
fisheries, and protection of natural ecosystems are all competing for water resources 
formerly dedicated to food production (Pandey et al., 2003). Under such 
circumstances, decentralized rainwater harvesting adaptations have proven efficient. 
For example, in the Negev Desert, the decentralized harvesting of water in micro-
catchments from rain falling over a one hectare watershed yielded 95,000 liters of 
water per hectare per year, whereas collection efforts from a single large unit of a 
345 ha watershed yielded only 24,000 liters per hectare per year. Thus, 75% of the 
collectible water was lost as a result of the longer distance of runoff. For instance, the 
indigenous teras  water-harvesting system in Sudan offers agricultural production 
security and also raises the nutrient limited yield from 150–250 to 650 kg/ha through 
its nutrient-harvesting effects. 
Widespread arsenic poisoning is another case in point where rainwater harvesting 
has great potential as a possible solution. In West Bengal and Bangladesh, alluvial 
Ganges aquifers used for public water supply are polluted with naturally-occurring 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Community-based Approaches| 64  
arsenic, which adversely affects the health of millions of people by causing arsenicosis 
and increasing the risk of cancer. Millions of people are at risk in Bangladesh alone. 
Arsenic mobilization is associated with the advent of massive irrigation pumping that 
draws relatively young water directly into the aquifer. Deep wells are being 
advocated as a remedy, as these may provide a source of clean water, but such a 
solution is only temporary. Rainwater harvesting is a better option to provide arsenic-
free, safe water in a cost-effective and accessible manner, particularly for drinking 
and food preparation. We must, however, address several challenges effectively to 
make rainwater harvesting efficient, particularly the treatment of harvested 
rainwater in areas where pollution is rampant. For instance, it is now possible to use 
nano-filtration for the removal of hardness, natural organic material, micropollutants 
such as pesticides, viruses and bacteria, salinity, nitrates, and arsenic. With an 
insightful policy, rainwater harvesting can be promoted as a core adaptation strategy 
for achieving the global security and sustainability of water resources in an era of 
anthropogenic climate change. 
Rainwater harvesting in response to climate extremes enhances the resilience of 
human society. An integrated perspective of traditional knowledge on adaptation 
strategies, such as the rainwater harvesting system, is particularly useful to 
comprehend vulnerability and adaptation to environmental stresses at the local level. 
Local studies on risk management and decision-making can complement global 
climate modeling exercises in order to fully capture the complexities of real life. 
Although rainwater harvesting continues to be practiced globally, and there is 
renewed interest in its revival, the system nonetheless has fallen to disrepair. 
Approach 2: Participatory community learning: Climate Field 
Schools  
Behavioral change in response to long-term climate change adaptation can be best 
achieved through participatory community learning. 
Case 38: Indonesia's experience with Climate Field Schools (CFS) 
The current Climate Field Schools (CFS) being undertaken by LACC, which is working on 
integrating climate change concepts, reflect a good practice that should be maintained 
and sustained. As a time-tested non-formal education method among farmers, Farmer 
Field Schools (FFS) provide value-added features to the otherwise unilinear, top-down 
methods based on the diffusion model or technology transfer approach. 
The  Climate Field School (CFS) concept is a group-based learning process introduced 
with the aim of increasing farmers’ knowledge of climate and their use  of climate 
forecast information. The basic concept of CFS is to disseminate climate information to 
end users by translating the information from scientific language into field language 
and then translating field language into farmers’ language through field schools (Motha 
et al., 2004).  
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Community-based Approaches| 65  
Indonesia’s national meteorological service, the Meteorological and Geophysical 
Agency (BMG),  incorporated El Niño information into its dry season forecast, which 
was released in March 1997, six months before the onset of the event.  
But despite the availability of such information, the 1997
98 El Niño resulted in 
widespread social and economic damage in Indonesia because adequate mitigation 
measures were not taken. Large
scale forest fires generated a regional smoke and 
haze emergency and El Niño
induced drought resulted in a production shortfall of 
three million metric tons of paddy.   While the information was released by BMG six 
months before the onset of the El Niño event, there was no institutional mechanism to 
translate the global El Niño index into local impacts. This demonstrates that issuing 
climate information alone is not sufficient for recovery planning and rather that it must 
be translated into terms of impacts on the variables that are of interest to decision 
makers. For example, reservoir managers need to know how an El Niño event might 
affect stream flow and evaporation. On the other hand, farmers need to know how El 
Niño could potentially impact the spatial and temporal distribution of rainfall. 
ADPC efforts to stimulate local capacities to implement climate risk management 
strategies resulted in innovative approaches that are initiated by program stakeholders 
themselves. One such initiative is the Climate Field School (CFS). 
In Indramayu district, which has a very heterogeneous rainfall pattern, BMG responded 
to stakeholder needs by downscaling the seasonal forecast in spatial terms, i.e. dividing 
the district into different rainfall regions and producing forecasts for each region. 
Information regarding the varying dates of onset and termination of rain in different 
parts of the district is instrumental in setting up a cropping strategy (e.g. dry seeding vs. 
wet seeding) as well as in determining the timing of planting activities. In Kupang, the 
program has institutionalized a sustained dialogue between forecast providers and 
users. The CFS employs practical and field
based learning for agricultural extension 
workers and farmers to enhance their expertise in using climate forecasts to make 
appropriate farming
related decisions. While dialogues between farmers and 
extension workers formally extended over only two seasons, the CFS has become a 
permanent institutional mechanism that connects producers of climate information, 
agricultural extension workers, and end users, including small
scale farmers. 
Institutional mechanisms at the district level involving BMG and district officials have 
also been established to interpret and make use of climate information to manage 
climate risks in water resource management and the agricultural sector. 
Source: ADPC, "Twenty Years of Reducing Disaster Risks in Asia & the Pacific." 
At the heart of C/FFS is the experiential learning process or “learning by doing” 
approach. Here, a group of farmers undergo a cyclical process of being exposed to an 
“experience” (actual or simulated) which they observe and reflect upon (analysis), 
derive lessons from (principles learned), and use as the basis for planning actual 
applications of such lessons and principles to immediate or future problems. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Community-based Approaches| 66  
Transforming short-term adaptation behaviors into long-term behaviors 
CFSs are designed to enable farmers to acquire knowledge on climatology and build 
their capacity to read and understand climate information and data so that they can 
better plan their farming activities based on this information. Eventually, the series of 
C/FFS sessions on weather, climate variability, climate risks and impacts, mitigation, 
adaptation, early warning, and other climate-related topics can help transform their 
short-term adaptation behaviors into longer-term behaviors. This is based on the 
assumption that as they learn more about the science of climate change through 
C/FFS, they will acquire a more well-rounded knowledge that enables them to come 
up with broader and more long-term decisions. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Climate Change and Human Health in Recovery| 67  
Climate Change and 
Human Health in 
Recovery 
 
 
The health of human populations is affected by climate 
variability and change through both direct mechanisms, for example, heat waves in 
conjunction with episodes of poor air quality, especially in urban areas, and indirect 
pathways, such as changes in the prevalence of vector-borne and non-vector-borne 
infectious diseases. Populations with different levels of technical, social, and 
economic resources would differ in their sensitivity to climate-induced health impacts. 
Sensitivity to climate variability and change would be expected to be higher for those 
populations with poor basic living conditions such as overcrowding, malnutrition, and 
inadequate access to health services. Thus, the sensitivity of the health of the human 
populations to climate conditions can be expected to be highest in developing 
countries and among the poor in transitional and developed countries. 
Global climate change would affect human health via pathways of varying complexity, 
scale, and directness, and with different timing. The more direct impacts on health 
include those due to changes in exposure to weather extremes (heat waves, winter 
cold); increases in other extreme weather events (floods, cyclones, storm-surges, 
droughts); and increased production of certain air pollutants and aeroallergens 
(spores and moulds). Decreases in winter mortality due to milder winters may 
compensate for increases in summer mortality due to the increased frequency of 
heat waves. 
Climate change, acting on health via less direct mechanisms, would affect the 
transmission of many infectious diseases. For example, vector-borne infections, the 
distribution and abundance of vector organisms and intermediate hosts, are affected 
by various physical factors, such as temperature, precipitation, humidity, surface 
water, and wind; and biotic factors, such as vegetation, host species, predators, 
competitors, parasites, and human interventions. 
Many developing countries are particularly vulnerable to the impacts of climate 
change because of factors such as widespread poverty, recurrent droughts, 
inequitable land distribution, and overdependence on rain-fed agriculture. In recent 
years it has become clear that climate change will have direct and indirect impacts on 
diseases that are endemic here. Following the 1997–1998 El Niño event in east Africa, 
a Rift Valley Fever (RVF) outbreak in Somalia and northern Kenya killed as much as 
80% of the livestock and affected their owners (WHO, 1998b). 
Chapter 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Climate Change and Human Health in Recovery| 68  
The meningitis belt in the drier parts of western and central Africa is expanding to the 
eastern region of the continent. There is increasing evidence that climate change 
plays a significant role in vector-borne diseases (WHO, 1998). For example, malaria 
incidence in a highland area of Rwanda increased by 337% in 1987, and 80% of this 
variation could be explained by rainfall and temperature (Loevinsohn, 1994). Even 
small changes in mean temperature and precipitation can increase the potential of 
malaria epidemics. Flooding can facilitate breeding of malaria vectors and 
consequently malaria transmission in arid areas. The Sahel region, which has suffered 
from drought in the past 30 years, has experienced a reduction in malaria 
transmission due to the disappearance of suitable breeding habitats. Yet, there are 
risks of epidemics if flooding occurs (Faye et al., 1995). In addition, some of the 
traditional drought areas likely to receive increased rainfall, and therefore subject to 
flooding that could facilitate mosquito breeding, may become more vulnerable to the 
spread of malaria. 
Cholera is a water and food-borne disease, and has a complex mode of transmission. 
Flood causes contamination of public water supplies, and unhygienic social water 
sharing practices. During El Niño years, cholera incidences increase substantially in 
cholera epidemics observed in Djibouti, Somalia, Kenya, Tanzania, and Mozambique 
(all lying along the Indian Ocean) due to two conducive factors: increased sea surface 
temperature and excessive flooding (WHO, 1998a).  
Climate change is likely to expand the geographical distribution of several vector-
borne diseases to higher altitudes and to extend the transmission seasons in some 
locations. Perhaps these diseases will expand into higher latitudes, or perhaps 
decreases in transmission may occur through reductions in rainfall or increases in 
temperature above a threshold for vector survival. As the process of climate change is 
gradual and detectable only over decades, the impact on health will also be slow to 
emerge. Over long periods, changes also occur in non-climatic risk factors. For most 
vector-borne illnesses (malaria, Leishmaniasis, tick-borne encephalitis, Lyme disease), 
current monitoring data can provide only very broad quantification of the 
relationship between climate and human disease. Assessment of the climate 
contribution to long-term trends requires data on factors such as land use, host 
abundance, and intervention measures. 
Many of the adaptive measures are very effective, but may not be unique to climate 
change. Adaptive actions to reduce health impacts can be considered in terms of the 
conventional public health category of prevention, and constitute the basis of a no-
regrets adaptation strategy. Understanding how climate affects the transmission of 
these diseases will lead to enhanced recovery planning, and effective interventions 
could lead to sustainable health security. 
For example, bed nets can be supplied to populations at risk of exposure to malaria. 
In fact, early warning systems, such as extreme heat health warnings and famine 
early warnings, have been established to provide information on hazards and 
recommended actions to take for avoiding or reducing risks. Primary prevention 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Climate Change and Human Health in Recovery| 69  
largely corresponds to anticipatory adaptation. Several studies in Africa have 
demonstrated that insecticide-treated bed-nets and curtains can significantly reduce 
the risk of malaria infections (Lengeler,1998). The socioeconomic status of 
communities may determine whether safe drinking water (piped water, rain-
harvested water, and protected wells) is available (Sabwa and Githeko, 1985). The 
quality of housing is important because simple measures such as screening windows 
and doors will prevent the entry of disease vectors into human dwellings. 
Box 1: Diarrheal Illness 
The relative importance of different pathogens and modes of transmission (via water, 
food, insects or human-human contact) varies between areas, and is influenced by 
sanitation levels. As pathogens are known to vary in their response to climate, this is 
likely to cause geographical variation in temperature relationships, depending on the 
level of development. The quantitative relationship between climate and overall 
diarrhea incidence (diarrhea due to all pathogens) has rarely been explicitly quantified. 
A study in Peru provides evidence of the meteorological dependence of diarrheal 
illness and a possible analogue for longer-term climate change impacts. The time series 
data reported the relationship between temperature and relative humidity and daily 
hospital admissions at a single pediatric diarrhea disease clinic in Lima, Peru. Analyses 
based on 57,331 admissions over a period of just under six  years revealed a 4% 
increase in admissions for each 1 °C increase in temperature during the hotter months, 
and a 12% increase per 1 °C increase in the cooler months. During the 1997–98 El Niño 
event, there was an additional increase in admissions expected on the basis of pre-El 
Niño temperature relationships. The time series methods used in this study 
independently controlled for seasonal variations, other climatic factors and long-term 
trends, so that the variation in diarrhea rates can be attributed confidently to variations 
in temperature. 
The positive correlation is also biologically plausible, as a high proportion of diarrhea 
cases in Peru, as in many tropical developing countries, are caused by bacteria and 
protozoa (e.g., enatmoeba) which favor by high temperatures. Very long-term data 
gathering is necessary to provide clear evidence of changes in disease burdens in 
relation to longer-term changes in climate. Ideally this would cover not just one but 
multiple El Niño/La Niña-Southern Oscillation (ENSO) cycles. 
Source: McMichael et al. (2003), WHO (2003).
 
Lesson 
x  Diarrheal illness is already of major importance for tropical developing 
countries because of its large contribution to the burden of ill health. Although 
that burden is much more a consequence of poor sanitation and nutrition than 
of climatic conditions, the demonstration of climate sensitivity suggests that 
climate change is likely to contribute to an increase in morbidity unless 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Climate Change and Human Health in Recovery| 70  
counteracted by increasing standards of living and improved public health. 
Approach 1: Climate-smart urban and health care design fostering 
synergy between mitigation and adaptation 
The concentration of population and consumption tends to increase rapidly during 
the early stages of urbanization and development. Denser urban areas have higher 
energy efficiency and shorter travel distances, but increasing the density of people, 
economic activity, and infrastructure tends to amplify the effects of climate on cities. 
For instance, green space can reduce the urban heat-island effects, but it can also fall 
victim to building developments. Similarly, increased density combined with the 
paving of infiltration areas hampers urban drainage that mitigates flooding. 
 
In the recovery stage, unless disaster impacts are systematically reduced, past 
development gains will be at risk. Development initiatives do not necessarily reduce 
vulnerability to natural hazards, and they can unwittingly create new vulnerabilities 
or heighten existing ones. So the focus in recovery should shift from reactive to pre-
ventive measures. Thus climate-change predictions have to be taken into account in 
current recovery decision-making and longer-term planning (GFDRR, 2005). 
 
Climate-smart urban design can foster synergies between mitigation and adaptation. 
Promoting renewable energy resources tends to favor the decentralization of energy 
supplies. Green spaces provide shading and cooling, reducing the need to air-
condition buildings or to leave the city during heat waves. Green-roofing can save 
energy, attenuate storm water, and provide cooling. Synergies between adaptation 
and mitigation are often related to building height, layout, spacing, materials, shading, 
ventilation, and air-conditioning. Many climate-smart designs, combining ecological 
principles, social sensibilities, and energy efficiency, are planned for urban areas in 
China, such as Dongtan, close to Shanghai, but so far the plans have largely remained 
blueprints (Girardet, 2008; Laukkonen et al., 2009; Wang and Yaping 2004; World 
Bank, 2010; Yip, 2008). 
Case 39: Heat wave preparations in Spain
Strengthening
 the Existing Health Care System as Part 
of the
 
H
eat Wave Recovery Program 
Anomalous hot and dry conditions between June and August 2003 affected several 
European countries including France, Spain, Italy and the UK. Europe experienced a 
consistent increase in mean temperature, with extreme temperature events to 6-7
O
above long-term average temperatures, and temperature variability (up to five 
standard deviations) accompanied by an annual deficit in rainfall by 300 mm (Parry et 
al., 2007). The Intergovernmental Panel on Climate Change (IPCC) model predicts that 
similar warm summers may occur at least every second year by 2080. 
The recent heat waves, such as the one that killed about 70,000 people in Europe in 
2003, showed that even high-income countries can be vulnerable.
 
Heat waves are 
likely to increase in frequency and intensity with urban heat islands producing 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Climate Change and Human Health in Recovery| 71  
temperatures up to 3.5–4.5°C higher than in surrounding rural areas. For better 
preparedness, several countries and metropolitan areas now have heat-health 
warning systems. 
After the 2003 heat wave, the Spanish Ministry of Health and CatSalut (the regional 
Catalan health service) implemented a comprehensive inter-ministerial and inter-
agency action plan to blunt the effects of future heat waves on health 
(
CatSalut 
2008).The plan incorporates health responses and communications (at all levels of 
health care) triggered by a heat-health warning system. The plan has three levels of 
action during the summer season: 
 
x  Level 0 starts on June 1 and focuses on preparedness. 
x  Level 1 is triggered during July and August and focuses on meteorological 
assessments (including daily recordings of temperature and humidity), 
disease surveillance, assessment of preventive actions, and protection of at-
risk populations. 
Level 2 is activated only if the temperature rises above the warning threshold 
(35°C in coastal areas and 40°C in inland areas), at which point health and 
social care and emergency service responses are initiated. 
 
The action plan and its health system response depends on using primary health care 
centers (including social services) in the region. The centers identify and localize 
vulnerable populations, and strengthen outreach and disseminate public health 
information to them during the summer. They also collect health data to monitor and 
evaluate the health impacts of heat waves and the effectiveness of interventions. 
Similar actions are underway elsewhere. Wales has a framework for heat-wave 
preparedness and response. It establishes guidelines for preventing and treating 
heat-related illnesses, operates an early warning system during the summer months, 
and has communication mechanisms with the meteorological office.
 
Metropolitan 
Shanghai has a heat-health warning system as part of its multi-hazard management 
plan. 
Sources: Shanghai Multi-Hazard Early Warning System Demonstration Project, 
http://smb.gov.cn/SBQXWebInEnglish/TemplateA/Default/index.aspx  (Accessed March 13, 2010)   
Approach 2: Children’s health care and climate change  
Climate change is already affecting the spread and intensity of disease, especially 
those diseases that affect children. Because of their age and dependency on others, 
children make up the most vulnerable group. Climate induced change through 
increasing numbers of natural disasters will multiply the threats against children 
especially from poorer families who habitually live in marginalized and unsafe 
settlements. In Bangladesh, India, Sahel, Nepal and Pakistan, a 2
o
C increase in the 
temperature profile of drought-affected areas will increase the diseases that most 
commonly affect children, such as malaria and diarrhea. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Climate Change and Human Health in Recovery| 72  
The increased frequency and intensity of shocks from climate change and natural 
disasters means poor households have less time to recover and bounce back, and 
thus adopt more risky survival strategies, such as cutting down on meals or selling any 
assets they may have in the short-term recovery, but in the long term it means they 
have fewer defenses against future crises. The only option available to parents may 
be to withdraw their children from school or send them out to work. Sometimes 
parents have to choose between children if they can only afford to send one child to 
school, and this often results in discrimination against girls. As climate change 
increases and many traditional livelihoods become unviable in the long term, 
education and training are very important tools to help children adapt to, cope with, 
and even avert climate change in the future. 
Implementable options: Governments in countries particularly vulnerable to natural 
disasters and those predicted to be most affected by climate change need to make 
investments in national adaptation and preparedness planning and action. National 
Adaptation Programs of Action (NAPAs), for example, offer one possibility. NAPAs 
enable less developed countries to identify climate change adaptation needs and 
response plans. To be effective for vulnerable groups, especially children, this analysis 
needs to build in an explicit focus on the needs of children, as they have specific 
requirements and make up the largest group affected by climate change and natural 
disasters (McDiarmid, 2008). 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Implementation Guide| 73  
 
 
 
Implementation 
Guide 
Implementing adaptation 
Implementing adaptation plans and strategies is a vital next step. Adaptation options 
need to be matched to priority needs both in the context of community-based action, 
as well as disaster risk reduction. Adaptation plans may be integrated into national 
and sectoral planning to enable sustainable development and the efficient use of 
resources.  
National governments have the responsibility to scale up lessons learned and 
products from adaptation projects.. To do this, it can be useful to start by creating 
awareness of climate change adaptation among planners and political decision 
makers beyond the environmental sectors, and training stakeholders within these 
areas. Operational guidelines could be prepared to help integrate adaptation into 
various sectors from the national to the local level, and from the local to the national 
level, and to encourage countries in the regions affected to implement more pilot 
projects and facilitate funding for such projects. 
Capacity must be built at all stages of the adaptation process in developing countries. 
Focal points for climate change in those countries could be trained.  Inventories of 
successful experiences and the expertise available could be developed. Links with the 
disaster risk reduction community, especially with regard to disaster preparedness 
rather than relief, could be reinforced. Enhancing synergies between the Rio 
Conventions would promote the sharing of information and knowledge on 
assessment processes. Capacity building and the training of stakeholders would help 
the necessary integration of adaptation into sectoral policies and environmental 
impact assessments. International climate change committees could be created to 
help feed relevant information to regional committees. Collaboration among 
institutions active in climate change in all developing countries and in the global 
North would help promote knowledge exchange and build capacity. National forums 
could promote the exchange of information on vulnerability assessments, and 
adaptation planning and implementation at the regional level. 
The following implementation tasks are offered as recommendations. They draw on 
the lessons of cases from various countries. 
 
Chapter 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Implementation Guide| 74  
Decision-making under uncertain conditions 
An understanding of climate change and the impacts it will have at the micro-level 
are still hard to pin down. This is primarily due to the uncertainties built into systems 
i.e., the science of climate modeling, through scenario, model, and parameter 
uncertainties. It is micro-level information that communities, local and national 
governments want to inform their adaptation planning (Pettengelle, 2010). For 
example, how will the yield of maize change in individual districts or countries by the 
end of the century? Decision makers often have to make do with limited climate 
information and restricted technical capacity to apply such information for robust 
decision-making in recovery. This is a key concern frequently raised by practitioners in 
designing sound climate-resilient recovery programs related to future climate change 
adaptation. Thus, insufficient availability of and access to climate change information 
at the local level becomes a major barrier to its use in adaptation for recovery 
planning and implementation. This guidance note is intended to help in the use of 
existing climate observation (say, baseline years) and future projections to integrate 
climate change adaptation in development planning at various levels through 
recovery efforts. 
Approach 1: Take stock of the available information on hazard 
exposure, vulnerabilities, and risk assessment before making 
intervention decisions 
In any given location, the precise impacts of climate change are unknown. Experience 
shows that investments in pre-disaster policy development and planning pays 
dividends in terms of the quality integration of disaster risk reduction in recovery. An 
understanding of emerging trends, likely changes, and levels of vulnerability to 
specific changes can be built up from a variety of sources including local observations 
and meteorological data. Assessing what is known about the climate change impacts, 
what is uncertain (the ‘known unknowns’), and the factors that limit adaptive 
capacity, and addressing all these areas make up the full continuum of adaptation 
(Pettengelle, 2010). 
Historical weather and climate data and analyses of extreme conditions are usually 
available from meteorological agencies, and experts can be consulted on the 
availability of climate change projections that are downscaled for national use. 
Information on the exposure and vulnerability of communities is often harder to 
locate, but may be obtainable from standard national statistics or from surrogate 
data such as land cover, population, and income levels. Risk studies and assessments 
may be available for specific situations (UNISDR, 2009). For example, the flood-prone 
municipality of Pune, India undertook a city-wide assessment of flood risks, using 
detailed city drainage maps. Similarly, in the United Kingdom, London used a flood 
management study conducted by a national government agency as the basis for 
analyses and planned actions as a proactive adaptation initiative. South Africa, 
meanwhile, made projections of future water needs based on historical data and 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Implementation Guide| 75  
current trends. 
Box 2: Good Recovery Planning 
Recovery plans should have a clear and coherent approach to disaster risk reduction, 
be integrated into development initiatives, be multi-hazard in nature, and where 
appropriate, consider climate change scenarios. They should address anticipated 
future climate risks. The effective reduction of risk can only proceed from a prior 
identification and assessment of prevailing or foreseen risks, including climate risks, 
whereas much of the immediate recovery processes are determined by a post-facto 
assessment of physical losses. The prior planning of recovery or the development of 
recovery frameworks and strategies based on evidence and lessons from previous 
disasters will accelerate this process. For example, Pune City in Maharashtra has been 
affected by several severe floods over the last six decades, the most significant being 
the 1961 flood that involved a major dam failure. Anticipating an increased frequency 
of floods owing to climate change, the city authorities have developed a 
comprehensive climate change adaptation and mitigation plan. A systematic city-
wide plan of practical action to reduce flooding has been implemented. 
Source: GFDRR (2009), Provention (2009).   
For details: 
www.gfdrr.org/docs/ISDR_Applying_DRR_For_CCA.pdf
,  
www.proventionconsortium.org
  
Approach 2: Consider both climate change and non-climate factors 
when implementing climate change adaptation decisions  
The task of recovery policy-makers, planners, and decision-makers is to recognize 
those activities and decisions at risk from a changing climate. Mainly in developing 
countries, decision makers at all levels
 
often have to make decisions with limited 
technical capacity and inadequate access to climate information. The uncertainties 
commonly associated with climate change are often a key concern raised by 
practitioners in designing sound adaptation programs in recovery. Climate change is 
an important source of risk to the achievement of long-term recovery objectives. 
However, uncertainties associated with other future social, economic, and 
environmental changes may be equally important for the consideration of options 
during post-recovery interventions. Decisions must be made despite uncertainty. We 
recognize the reality that uncertainty will be significant for many aspects of climate 
change adaptation at the local level. Thus, following proactive decision-making during 
recovery, systematic and regular monitoring and appraisal is essential to help protect 
against uncertainty.  
 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Implementation Guide| 76  
There are three types of climate-sensitive decisions, namely: 
Climate adaptation decisions 
Decisions must be made to manage the expected consequences of climate variability 
(e.g., cold years, flood events, seasonal droughts, storm surges, extreme wind speeds, 
freezing conditions, heat waves). These are decision areas where climatic factors 
have long been acknowledged as being a primary consideration in the choice of risk 
management options. With climate variability and change being the key drivers, 
these decisions are referred to as climate adaptation decisions (Willows and Connell, 
2003). 
Climate-influenced decisions 
There are also many decisions where the outcomes could be affected by climate 
change, but where climate change is only one of a number of factors involved. For 
example, in the post-flood recovery program in Bangladesh, some of the constraints 
faced by BRAC were a lack of local varieties of rice, mustard seed, and organic 
fertilizer. The price of seeds went up in the post-flood period. Seedlings were not 
available in the local markets, and had to be purchased from government and local 
agencies that import seeds. BRAC provided recovery aid in kind, not cash. 
Case 40:  Sea-Level-Influenced Salinity: Bangladesh 
Bangladesh is a densely populated, and economically unsound third world country 
exposed to multi-hazards. Future climate change may increase cyclone intensity and 
storm surge, increase flooding due to intense monsoon rainfall and slower river runoff, 
and cause sea level rise. 
Sea level rise (SLR) is a major problem for southwest Bangladesh. The climate change 
scenario for 2050 suggests that an increase in the sea level of approximately one foot 
will have major negative impacts that will cause the permanent displacement of nearly 
6 million people (Mohal & Hossain, 2007). It will also have an impact on drinking water, 
agriculture, and fisheries production due to the upward inland movement of the saline 
front northward, and the inundation of fresh water bodies in southwest Bangladesh.  
Changes in livelihoods from farming to salt water fisheries as part of the adaptation 
measures adopted may cause other complex recovery issues, such as: 
1.
  Increased unemployment due to the lower manpower requirements of salt water 
shrimp cultivation as compared to rice farming,  
2.
  Increased salinity level of surrounding shrimp farm areas will hamper livestock 
grazing and milk yield, and the 
3.
  Clearing of large mangrove areas and the collection of wild fry could affect non-
target fish species.  
With help from BRAC, the recipients could immediately sow the grains, rather than 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Implementation Guide| 77  
losing time trying to obtain these inputs in the market. (BRAC, 2000; Russell, 2000). 
Access to seeds is not a  climate related factor but needs to be taken into account 
when making decisions about a recovery program. Such decisions may be called 
climate-influenced decisions (Willows and Connell, 2003). 
Source: BRAC (2000). 
 
Climate-independent decisions 
Climate-independent decisions lead to actions that limit or constrain the ability of 
other decision-makers to manage, reduce, or otherwise adapt to the consequences 
of climate change. Climate-adaptation-independent decisions include the 
consequences of decisions taken today that restrict the freedom of future decision-
makers to manage future climate risks. Climate-adaptation-independent decisions 
can be characterized as examples of unsustainable development.  
Examples of adaptation-independent decisions include the construction of long-lived 
assets, such as housing developments, in areas vulnerable to increased risk of coastal 
flooding (IPCC, 2001b). Such developments can reduce the options available to flood 
risk managers to implement flood protection measures within a flood risk area both 
now and in the future, perhaps when the climatic hazard has become greater and 
more certain. They may also require specific present and future flood protection 
measures as a consequence of their location, thereby reducing resources available for 
existing developments in need of flood mitigation measures. (Willows and Connell, 
2003). 
Approach 3: Vulnerability reduction and risk reduction: Adaptations 
along the hazard-vulnerability-risk continuum  
Two roughly distinct perspectives inform how people approach the challenge of 
climate adaptation: one focuses on creating response mechanisms to specific impacts 
associated with climate change, and the other on reducing vulnerability to climate 
change by building capacities that can help deal with a range of impacts. The first 
approach uses understood impacts as a starting point for distinguishing between 
adaptation and “normal” development. 
Adaptation is often seen as a choice between reducing general vulnerability (for 
example, by improving people’s incomes or by diversifying their livelihood strategies), 
and preparing for specific hazards, such as floods. This choice between addressing the 
underlying causes of vulnerability to climate change impacts (start-point vulnerability), 
and a ‘predict and adapt’ model for specific climate-hazards (end-point vulnerability) 
is an artificial choice on the ground, where a combined approach is needed (McGray 
et. al., 2007). 
It has often been observed that climate change information alone does not help in 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Implementation Guide| 78  
making reasonably good decisions. The approaches to adaptation also have some 
bearing on the decision-making in the long-term recovery process. To frame 
adaptation within the context of development efforts, McGray et al. (2007) positions 
adaptation activities along a continuum of approaches, from actions undertaken to 
address the underlying contributors to climate change vulnerability, to measures 
explicitly directed to address the impacts of climate change. The vulnerability-based 
approach, with its emphasis on underlying vulnerability factors (often non-climate 
factors), is less dependent on climate projections for adaptation planning. On the 
other hand, approaches starting with climate change impacts generally require more 
information on likely changes in key climate parameters to assess potential impacts. 
In practice, of course, many instances of adaptation fall between the extremes of 
focusing on vulnerability versus focusing on impacts. Actions are taken with a specific 
type of impact in mind, but nevertheless involve activities with more general benefits 
in reducing vulnerability. One way of framing this diversity is as a continuum between 
wholesale development activities on one hand and very explicit climate change 
measures on the other. 
Box 3: A continuum of adaptation activities: From development to climate change    
Addressing Drivers of 
Vulnerability 
Building Response 
Capacity 
Managing Climate 
Risk 
Confronting 
Climate Change 
UGANDA: 
Providing 
women with 
crossbred goats and 
instructions in graze-
free feeding 
(Karamoja Agro 
Pastoral Development 
Program) 
BRAZIL: 
Participatory 
reforestation in Rio de 
Janeiro’s hillside favelas 
to combat flood-induced 
landslides (City of Rio de 
Janeiro) 
TANZANIA: 
Monitoring 
salinization of drinking 
water and drilling new 
wells to replace those 
that are no longer 
usable (South South 
North) 
INDONESIA: 
Managing coral 
reefs in response 
to widespread 
coral bleaching 
(WWF) 
 
BANGLADESH: 
Diversification of 
livelihood strategies 
in areas vulnerable to 
flooding (South  South 
North) 
 
MONGOLIA: Reinstating 
pastoral 
networks to 
foster appropriate 
rangeland management 
practices in arid regions. 
(National University of 
Mongolia) 
MALI: 
 
Teaching 
farmers to collect 
climate data and 
integrate it into their 
planting decisions. 
(Government of Mali 
/Swiss Agency for 
Development and 
Cooperation 
NEPAL: Reducing 
the risk of glacial 
lake outburst 
floods from Tsho 
Rolpa Lake 
(Government  of 
Nepal) 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Implementation Guide| 79  
Addressing Drivers of 
Vulnerability 
Building Response 
Capacity 
Managing Climate 
Risk 
Confronting 
Climate Change 
CUBA:    Vaccination 
program to eradicate 
diseases in low 
income  areas (Cuban 
Ministry of Health) 
TANZANIA: 
 
Reviving 
traditional  enclosures to 
encourage vegetation 
regeneration and reduce 
land degradation 
(Ministry of Natural 
Resources and  Tourism, 
Tanzania) 
BANGLADESH:    Using 
nationally 
standardized risk 
assessment 
procedures to develop 
community 
adaptation plan of 
action (local 
government) 
 
Vulnerability focus                                                                                                                        Impact focus 
The continuum can be roughly divided into four types of adaptation efforts (from left to right) 
Source: Modified from McGray et al. (2007). 
The most vulnerability-oriented adaptation efforts shown on the left side of the table 
overlap almost completely with traditional development practices, where activities 
take little or no account of specific impacts associated with climate change, and have 
many benefits in the absence of climate change. On the far right, highly specialized 
activities exclusively target distinct climate change impacts, and fall outside the realm 
of development as we know it. Benefits of these activities will be reaped only in the 
event of climate change. The large-scale, qualitative descriptions of current and 
future trends in primary climate variables may well be sufficient to climate-proof 
long-term national or regional development strategies, e.g., to restructure the key 
climatically sensitive economic sectors. But the design of major coastal security 
infrastructure at a particular location requires information about changing surge and 
wave heights at the local level, in additional to broad sea-level rise projections, to aid 
the design of a defense system. McGray et al. noted that 65% of the adaptation 
projects reviewed that can be characterized as ‘addressing the drivers of vulnerability’ 
(the ‘development’ end of the continuum) also included activities that focused on the 
impacts of climate change (the ‘confronting climate change’ end of the continuum). 
This is the reality of adaptation on the ground, where all these elements must be 
addressed. For example, if likely impacts such as increased drought conditions are not 
considered when diversifying agricultural livelihoods, maladaptation is likely. Equally, 
if the insecurity of women’s land ownership is not addressed alongside adaptations in 
agricultural practices, then their future in a changing climate is not secure (Oxfam, 
2009b). 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Implementation Guide| 80  
Approach 4: Dealing with climate change adaptation mapping: 
Identifying the institutions, policies and mechanisms already in 
place for reducing disaster risk  
A mapping exercise is an essential starting point in identifying which organizations 
need to be involved, and what synergies, overlaps, and gaps may exist. Ideally, this 
should be conducted jointly by colleagues from both the climate and disaster fields. It 
should also consider other relevant sectors, different levels of government, and the 
role of non-governmental organizations.  
In Vietnam, a detailed study of existing institutional mechanisms and capacities for 
both disaster risk reduction and adaptation was conducted in preparation for the 
national policy forum. In the Maldives, efforts were made to take stock of existing 
programs and to engage in multi-sectoral consultations with local governments to 
assess the gaps and challenges to be addressed, prior to the formulation of a strategic 
national action plan. The strategy adopted in London (UK) is built on existing 
frameworks and programs on risk.  
Approach 5: Plan an integrated program to tackle both climate 
change adaptation and risk reduction  
Joint initiatives to address immediate practical problems are a good way to make 
progress and learn how to integrate the concerns of climate change and post-disaster 
recovery to achieve risk reduction. These may be new projects or revised and 
strengthened versions of existing programs. Adaptation programs can be quickly 
developed on the basis of existing disaster risk reduction efforts, while disaster risk 
reduction can be expanded through the increased capacity and resources made 
available for climate change adaptation.   
Typically a multi-stakeholder engagement process is used, and in some cases this has 
been taken to the community level. Actions are partly funded by multilateral climate 
change funds. 
Since there are no internationally agreed-upon guidelines for how to integrate 
climate change adaptation into recovery programs, various countries have made 
their own attempts to prepare frameworks, though these are diverse and largely 
untested. Some progress is being made in a number of countries to integrate climate 
change adaptation and recovery, both at the national policy level and through on-
the-ground action. A few common themes and lessons are emerging. Local 
governments as well as national governments are taking the lead on this, and both 
are investing in incorporating climate-resilient adaptations into recovery strategies. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Implementation Guide| 81  
Approach 6: Community-based climate change adaptation model: 
Institutionalize through local government 
In the rural areas of India, there is often a lack of communication between NGOs, 
local communities, and governmental organizations, such that important information 
from one sector is not shared with the others. Like most rural villages in India, the 
village community is the basic social system in Kutch. Each village community has a 
decision-making body, usually called a panchayat, which makes various decisions for 
the village economy and self-governance. Traditionally, this body has been 
dominated by people with power, and this sometimes causes inequality and 
corruption. However, after any major disaster like the Kutch cyclone of 1998 and the 
Bhuj earthquake of 2001, local level coordination and networking proved to be a very 
effective way for the implementation of a rehabilitation program.  
There are hundreds of other villages that suffer from a recurrence of droughts, that 
would like to have water-saving and income-generating schemes included in the long-
term drought-proofing mechanisms adopted by their local community. Climate 
change induced recovery programs from slow disasters (e.g. drought) can easily be 
implemented through such an institutional mechanism. 
Case 41: Setu/NGO networks, Gujarat: Link between government and community 
 A network was established in Kutch after the Gujarat Earthquake to implement such 
effective initiatives widely and effectively. Abhiyan instituted a cluster level “sub-
center” for every fifteen to twenty villages all across the district. This center became a 
setu
After the Kutch cyclone of 1998, 26 local NGOs in the region came together and 
established Abhiyan as a central coordinating organization. Since its establishment, 
Abhiyan has played an important role in the local NGO network as each member NGO 
continues working in its specialized field. Soon after the earthquake, the members of 
Abhiyan realized the need for some coordination of their efforts. Although a 
considerable amount of aid and assistance came into Kutch, it was not distributed 
properly. Therefore, Abhiyan instituted a cluster level “sub-center” for every 15 to 20 
villages all across the district. These centers became known as the setu. With their 
unique institutional structure, the setu focused on coordination between villages and 
government or aid agencies, and on information management to ensure that support 
would be provided to the most needy communities during the relief and rehabilitation 
process. 
Originally 20 setu were established after the Bhuj earthquake, with each consisting of 
five to seven staff members with specialized roles. Most staff members were from 
surrounding cluster villages, such as local NGO members, and at least one staff 
member came from the villages in hopes that the setu or similar bodies would 
eventually be run by villagers. Since these staff members live near the villages and 
communicate with local residents on a daily basis, they have gained the trust of the 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Implementation Guide| 82  
villagers and have an accurate understanding of their situation and needs. This trust 
and understanding is essential to providing the support needed by the local people and 
the community. Since they work with villages closely and independently, the setu have 
been able to work with a multi-sectoral grievance mechanism. This helps create more 
equality and transparency in the village community's governance and decision-making 
processes.
  
Although an attempt has been made to link climate change impacts to drought, and to 
propose adaptation actions at the community and local government policy levels, it 
should be noted  that the study presents only preliminary observations based on 
limited data (Annon, 2005). 
Lesson 
x  The setu were initially established for earthquake response. They had played 
an important role in the rehabilitation process and now are working well in the 
development process. Because of their unique characteristics, the 
establishment of local network organizations like the setu  following drought 
years has also worked well. These organizations, of course, work closely with 
local communities as well as local governments and NGOs so that necessary 
information for both short-term and long-term drought-proofing can be 
disseminated in local communities more effectively and efficiently.
 
Approach 7: Post-disaster surge capacity management: 
Strengthening everyday ’lifestyle issues’ of key persons to leverage 
surge capacity during disasters  
In the aftermath of any disaster, recovery programs are generally implemented 
quickly. It is important to note that some ad hoc systems and structures are adopted 
as part of a recovery program. Also, many reconstruction and rehabilitation programs 
in the past have led to the launch of major disaster risk reduction initiatives. However, 
with the passage of time, it is important to establish formal systems, procedures, and 
structures for the long-term sustainability of disaster risk reduction. Reducing risk in 
recovery and leaving a legacy and capacity to reduce risk in development requires a 
surge of institutional and technical capacity. In addition, normal development 
processes need to be streamlined to meet the expectations and demands for speed 
in recovery. 
As the organizations responsible for the long-term development and viability of their 
areas, local governments must consider and institutionalize disaster risk reduction 
activities in their day-to-day operations, including development planning, land use 
control, and the provision of public facilities and services.  
Surge capacity can be managed by increasing the capacity of an existing department, 
rather than creating a new department or agency, and this is a more viable option 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Implementation Guide| 83  
than those observed in many recovery programs in the past. Agreements for human 
resource sharing with the neighbourhoods and the prior planning and agreement of 
streamlined processes can facilitate and accelerate risk reduction mechanisms in 
recovery. 
Case 42: Twinning for shared resources, China 2010 
 China has a twinning assistance program. This program has a role in providing badly 
needed financial and technical inputs to disaster-affected areas from a pre-
established twin province or municipality. This mechanism pairs one better-off 
province with another in need. The agreement includes diverting 1%  of the annual 
income, and technical capacity, from the richer province to fund recovery projects for 
three years. This partnership is mutually beneficial, providing the donor province with 
experience  in providing financial and technical assistance to the disaster-affected 
province.  
After the 2010 earthquake in China, through the twinning assistance program, 
Shandong Province and Shanghai Municipality provided funds  not only to build 
schools and hospitals to higher than pre-disaster standards, but also to implement a 
program to upgrade the  management and professional capacity in schools and 
hospitals in Beichuan County and Dujiangyan City. They did this by deploying existing 
staff to the newly built institutions to provide on-the-job training or by receiving 
teachers, doctors, and managers from recipient provinces to receive training. Thus, 
when the buildings become operational again, both the structure and the services 
provided will be of a higher standard. 
Shifang is the recipient city paired with Beijing Municipality. Thirty-five primary and 
middle schools from Shifang signed a twinning agreement with 25 primary and 
middle schools in Beijing. This led to a Beijing – Shifang Distance Education Training 
Network that offers Shifang teachers access to about 20 courses over an e-learning 
system established by the Beijing Educational Science Institutes. On this network, 
more than a hundred education specialists provide on-line coaching. In addition, 
Shifang students can attend classes with students at their twin schools in Beijing using 
this system. Outstanding teachers from Beijing will go to Shifang to provide training 
to over 3,000 teachers and administrative staff. In addition, 180 key teachers from 
Shifang will go to Beijing for training in 2010.  
Source: http://www.sc.gov.cn/zt_sczt/zhcjmhxjy/cjjy/kjcj/200912/t20091217_871603.shtml 
http://www.sc.gov.cn/zt_sczt/zhcjmhxjy/dkzy/sf/200912/t20091201_859811.shtml 
Lessons 
x  Twinning offers benefits to both recipients and donors, building capacities 
and government networks within the region and country. It provides a stable 
source of resources and critical capacity sharing for a number of years, which 
is agreed upon before a disaster strikes, encouraging longer-term 
partnerships and risk sharing. Twinning can help an area cope with the 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Implementation Guide| 84  
increased demand for skills after a disaster, and can help build its capacities. 
It can be agreed upon before a disaster, allowing for fast and predictable 
deployment during recovery. 
x  Sustained support and resources at the local level ensure that policies 
become reality. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E  
Annexes | 85  
Annexes 
Annex 1: Tools 
 
The uncertainty of the local climate is what leaves communities vulnerable. Thus, the 
only effective way to prepare for the effects of climate change is to increase the 
capacity to cope with and adapt to change, i.e. to increase resilience. If local 
communities have systematically assessed their situation and know clearly what they 
need to best adapt to climate change impacts, they can then effectively contribute to 
district level plans. These in turn can inform regional and national adaptation plans 
and programs. 
Many tools have been designed to help communities and planners understand the 
likely local risks of climate change, and look at the vulnerability of their environment 
and livelihoods. Planning teams at the district or village development committee 
(VDC) level can use these tools to make assessments and gain an overview of the 
situation. Community-based organizations (such as forest user groups, water 
management groups, or soil conservation groups) can also use these tools to prepare 
themselves and to develop community-level adaptation plans (Regmi et al., 2010). 
These tools can help users analyze existing methods of coping and adaptation and 
then develop plans to increase resilience. 
There are various tools available for working toward adaptation. Kathleen Dietrich of 
Penn State University summarized the many different tools used by practitioners in 
their adaptation work in tabular form (Box 4).  
Example of the participatory tools to promote adaptation: 
Community-based Risk Screening Tool – Adaptation and Livelihoods (CRiSTAL)  
 
CRiSTAL is intended to promote the integration of risk reduction and climate change 
adaptation into community-level projects. By focusing on community-level projects, 
CRiSTAL promotes the development of adaptation strategies based on local 
conditions, strengths, and needs.  CRiSTAL can be used by local communities, project 
planners, and project managers. This tool was developed by IUCN, IISD, SEI-US and 
Intercooperation.  
For further information, visit: 
http://www.iisd.org/security/es/resilience/climate_phase2.asp
.  
Participatory Toolkit for Impacts and Adaptation  
DFID/UKAID's Livelihoods and Forestry Program in Nepal published a step-by-step 
guide to assessing the impact of climate change on forest-dependent communities. 
This tool kit is designed to help communities and planners understand the likely local 
hazards and risks of climate change and to look at the vulnerability of their 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Annexes | 86  
environment and livelihoods. It helps them analyze existing methods of coping and 
adaptation, and then to develop plans to increase resilience. The kit consists of a 
range of tools that can be used in various situations. District or VDC (Village 
Development Committee) level planning teams can use them to make assessments 
and gain an overview of the situation. Community-based organizations (such as forest 
user groups, water management groups or soil conservation groups) can use them to 
prepare themselves and develop community-level adaptation plans.  
Box 4: Participatory Tools to Support Adaptation  
Adaptation 
 Tool 
Sponsor 
Purpose 
Scale/ 
Location 
Methods 
Final Outcome 
Climate 
Vulnerability 
and Capacity 
Assessment 
(CVCA)  
CARE 
International  
Vulnerability 
and 
adaptation 
assessment  
Community
-focus, 
multi-scalar 
assessment  
Secondary research, 
policy analysis, key 
informant interviews, 
participatory methods 
at the community/ 
household level  
Inform and strengthen 
adaptation planning 
processes by providing 
context-specific 
information  
Community-
based Risk 
Screening Tool – 
Adaptation and 
Livelihoods 
(CRiSTAL)  
Inter-
cooperation  
Project 
assessment 
and decision 
support tool  
Community  
Possible methods 
include stakeholder 
consultations, 
participatory 
workshops, site visits, 
document review, 
Internet research, and 
interviews  
Devises adjustments to 
improve how projects 
impact the livelihood 
resources important to 
adaptation or suggest 
projects that better 
reduce climate risks  
Climate Change 
and 
Environmental 
Degradation 
Risk and 
Adaptation 
Assessment 
(CEDRA)  
TearFund  
Project 
assessment 
and decision 
support tool, 
aids in access 
to information  
Southern 
NGOs  
Scientific information 
assessment, points of 
contact for 
information, tools 
from PADR, matrix 
assessment, process 
completed through 
report  
Modified and newly 
agreed adaptation 
activities, improved 
understanding of climate 
change context and its 
relationship to 
environmental 
degradation  
Adaptive 
Capacity 
Benchmarkng  
 
Assess 
organizational 
capacities & 
change 
strategies in 
the context of 
climate 
change  
Organizatio
ns  
Document review and 
interviews, variations 
on interviews such as 
card sorting  
Recommendations for 
organizational 
improvement and 
climate change action 
plans  
Systemic 
Approach to 
Rural 
Development 
(SARD)  
Swiss Agency 
for 
Development 
and 
Cooperation  
Livelihood 
assessment, 
planning, 
project 
assessment  
Community
/Local 
Governmen
t  
Mapping, household 
typology, access to 
services, 
power/conflict 
analysis, outcome 
mapping, vision 
development, 
planning  
Vision statement, 
assistance in the design 
and re-orientation of 
development 
interventions  
Participatory 
ActionAid  
Vulnerability 
Multi-level 
Tools vary by level: 
Reveals causes of 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Annexes | 87  
Source: Modified from Kathleen Dietrich, 2010,  Regmi et. al. (2010). For details, visit 
http://wikiadapt.org/index.php?title=Participatory_tools_to_aid_adaptation (Accessed June 15, 2010). 
Capacity building and training  
Capacity building at the local, national, and regional levels is vital to enable 
developing countries to adapt to climate change. It is important for stakeholders and 
donors to recognize the role of universities, tertiary centers, and centers of excellence. 
Enhanced support is needed for institutional capacity building, including the 
establishment and strengthening of centers of excellence and the development of 
hydro-meteorological networks. Training for stakeholders in all sectors would help in 
the development of specialized tools for planning and implementing adaptation 
activities, thus promoting action by local and national governments. 
Governments and national and international agencies should provide support for 
capacity building for adaptation. For example, the UNEP-funded Caribbean 
Vulnerability 
Assessment 
(PVA)  
assessment 
tool  
(community
, district, 
national)  
PRA tools in the 
community, interview 
emphasis at other 
levels, recordings & 
video, are not detailed 
since it is based on 
another tool 
(REFLECT)  
vulnerability, increases 
effectiveness of 
emergency and 
development activities  
Participatory 
Capacities & 
Vulnerabilities 
Assessment 
(PCVA)  
Oxfam  
Vulnerability 
and coping 
assessment  
Community  
Participatory rural 
appraisal tools 
(mapping, matrices, 
ranking, Venn 
diagrams, etc.)  
Information presented 
to government and 
other stakeholders, 
strategic planning 
(proposals), advocacy 
tool  
Community-
Based Disaster 
Risk 
Management 
(CBDRM)  
Asian Disaster 
Preparedness 
Center (ADPC)  
Risk 
assessment 
and 
management 
development  
Community  
Participatory rural 
appraisal tools 
(mapping, matrices, 
ranking, etc.), 
secondary sources, 
visioning/planning, 
social network 
analysis  
Creation of Community 
Disaster Risk 
Management 
Organization (CDMO) 
and implementation of 
management plans  
Participatory 
Assessment of 
Disaster Risk 
(PADR)  
Tearfund  
Vulnerability 
and capacity 
assessment, 
action 
planning  
Community  
Participatory rural 
appraisal tools 
(mapping, matrices, 
ranking, Venn 
diagrams, etc.), 
modified sustainable 
livelihoods approach 
(assets)  
Action planning and 
advocacy  
Livelihood 
Assessment 
Toolkit (LAT)  
ILO, FAO  
Livelihood 
assessment, 
coping/respon
se strategies, 
impact  
Community
-focus, 
multi-scalar 
assessment  
Secondary sources, 
qualitative/statistical 
information, 
participatory rural 
appraisal tools  
Each step informs the 
next leading to various 
plans and actions within 
the pre- or post-disaster 
context  
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Annexes | 88  
Environment Program, represented at the SIDS meeting, promotes regional 
cooperation for the protection and development of the marine environment of the 
Wider Caribbean Region. 
The World Conservation Union (IUCN) detailed their work on capacity building for 
adaptation, including their Community-based Risk Screening Tool – Adaptation and 
Livelihoods (CRISTAL). This tool can reduce the impacts of climate change on 
community livelihoods. It was tested in Africa by IUCN and has the potential for more 
widespread use after further tests. 
Non-governmental agencies and organizations involved in capacity building for 
adaptation include the Red Cross/Red Crescent Center of Climate Change and 
Disaster Preparedness, and SouthSouthNorth, a network of organizations, research 
institutions, and consultants operating in Brazil, South Africa, Tanzania, Mozambique, 
Bangladesh and Indonesia aimed at driving the sustainable development agenda and 
building capacity for adaptation to climate change at the local level. 
Examples of related programs include the Caribbean Planning for Adaptation to 
Climate Change project, which developed climate change scenarios for the Caribbean 
and calculated potential losses. Based on this project, a comprehensive adaptation 
program is now underway in the Caribbean. It includes the Mainstreaming 
Adaptation to Climate Change project, which brings together the climatbe change 
and disaster management communities, and the Special Program on Adaptation to 
Climate Change. 
Human resources 
Human and civil society resources are another critical component of coping and 
adaptive capacity. This category includes literacy, level of education, access to 
retraining programs, and other factors that determine how flexible individuals may 
be in adapting to new employment opportunities or shifts in living patterns brought 
about by climate variability or change. We chose to use the dependency ratio and 
literacy rate as indicators. The dependency ratio measures the proportion of 
economically active and inactive individuals in a population. A higher dependency 
ratio would indicate that economically active individuals had many others to support, 
and resources for adapting to changes in climate would be more limited. We 
calculated India’s state-specific dependency ratios from state-specific percentages of 
male and female urban and rural populations in the workforce, and then averaged 
the results. The literacy rate was included as a measure of the skills that individuals 
would need in order to adapt. 
Expertise is lost between projects, and often it is difficult to retain experts once they 
reach a high level of expertise. Working groups created under these projects, which 
show significant potential for providing technical and scientific support, need to 
realize their potential by becoming better at disseminating information and compiling 
a database of best practices. For example, the Linking Climate Adaptation (LCA) 
Network was set up to help communities, policymakers, practitioners, and academics 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Annexes | 89  
share experiences and knowledge about adaptation to climate change. Training is 
also needed for models to be effectively applied and used for assessments at the 
national or regional level. For example, the PRECIS initiative helps build capacity by 
providing training on how to use the climate model to generate high resolution 
climate change scenarios for developing count 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E  
Annexes | 90  
Annex 2:  Selected References 
 
Asian Development Bank. (2005) Climate Proofing: A Risk-based Approach to 
Adaptation: Summary for Policy and Decision Makers. © 2005 Asian 
Development Bank. Accessed through web-source, 
www.adb.orgs/REACH/can-climap.asp
 
Adeel, Zafar, and Robert Pomeroy. (2002) "Assessment and Management of 
Mangrove in Developing Countries." Trees, 16, 235-238. 
ALNAP. (2002) Humanitarian Action. Improving performance through improved 
learning. London: Action. 
Annon. (2005) Climate Change Adaptation in Gujarat, India. In Community level 
climate change adaptation and policy issues, prepared by Kyoto University 
Graduate School of Global Environmental Studies, March 2005. 
Barbier, Edward, Mike Acreman and Duncan Knowler. (1997) Economic Valuation of 
Wetlands: A Guide for Policy Makers and Planners. Cambridge, England: 
Ramsar Convention Bureau, Department of Environmental Economics and 
Management, University of York. 
Beck, T. (1994) The Experience of Poverty: Fighting for Respect and Resources in 
Village India. London:Intermediate Technology Publications. 
Bangladesh Rural Advancement Committee (BRAC). (2000) In, Flood Relief and 
Rehabilitation Project. July 1998-July 1999. Phase ending report. Dhaka: 
BRAC, mimeo. 
Consultative Group on International Agricultural Research (CGIAR), (2010) Website 
accessed on 28 May 
2010.http://www.cgiar.org/monthlystory/may_27_2010.html 
Cosgrave, J. and Herson, M. (2008) Perceptions of crisis and response: A synthesis of 
evaluations of the response to the 2005 Pakistan earthquake. ALNAP seventh 
review of humanitarian action. London: ODI. 
Department for International Development (DFID). (2006b) Targeting Ethiopia’s 
Productive Safety Net Program (PSNP). K. Sharp, B. Taylor and A. Teshome. 
ODI, the IDL Group and A-Z Capacity Building Consult. 
Department for International Development (DFID). (2005a) Managing Groundwater 
Resources in Rural India: the Community and Beyond. Commissioned Report 
CR/05/35N, British Geological Survey. 
Ellison, Aaron. (2000) "Mangrove Restoration: Do We Know Enough?" Restoration 
Ecology, 8(3), 219-229. 
Espacios Consultores SA. (2000) Independent Evaluation of Expenditure of DEC 
Central America Hurricane Appeal Funding. San Jose, Costa Rica. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Annexes | 91  
Food and Agriculture Organization of the UN (FAO). (2006) Livelihood adaptation to 
climate variability and change in drought-prone areas of Bangladesh: 
Developing institutions and options, institutions for rural development, case 
study; R. Selvaraju, A.R. Subbiah, S. Baas & I. Juergens. Asian Disaster 
Preparedness Center Food and Agriculture Organization of the United 
Nations, Rome, 2006. 
Faye, O., O. Gaye, D. Fontenille, L. Konate, J.P. Herve, Y. Toure, S. Diallo, J.F. Molez, 
and J. Mouchet (1995) Drought and malaria decrease in the Niayes area of 
Senegal. Sante, 5, 199–305. 
Ferris, J. (1999) Am J Agric Econ 81:1309–1309. 
Francisco, H. A. (2008) "Adaptation to climate change: Needs and opportunities in 
Southeast Asia." ASEAN Economic Bulletin, 25 (1). pp. 7–19. 
Global Facility for Disaster Reduction and Recovery, (GFDRR), 2009; website accessed 
May 15, 2009: 
www.gfdrr.org
  
Global Facility for Disaster Reduction and Recovery (GFDRR), 2005; website accessed 
2009: 
www.gfdrr.org
  
Girardet, H. 2008. Cities People Planet: Urban Development and Climate Change. 2nd 
ed. Chichester, UK: John Wiley & Sons. 
Hellmuth, M.E., A. Moorhead, M.C. Thomson, and J. Williams (eds.) (2007) Climate 
Risk Management in Africa: Learning from Practice. New York: International 
Research Institute for Climate and Society (IRI), Columbia University, 
http://iriportal.ldeo.columbia.edu/portal/server.pt?space=CommunityPage&
control=SetCommunity&CommunityID=684&PageID=0. 
Hess, U. (2003) Innovative Financial Services for Rural India: Monsoon-Indexed 
Lending and Insurance for Smallholders. Agriculture and Rural Development 
Working Paper 9, World Bank, Washington DC. 
IMM. (2001) Learning Lessons from the Cyclone. A study of DFIDs Support for Post-
Cyclone Livelihoods Rehabilitation in Orissa, India. Exeter, UK: The Innovation 
Center, University of Exeter. 
Intergovernmental Panel on Climate Change Third Assessment Report (IPCC-TAR) 
(2001a) Climate Change 2001: Impacts, Adaptation and Vulnerability. IPCC 
Third Assessment Report, Cambridge University Press. 
Intergovernmental Panel on Climate Change Third Assessment Report (IPCC-TAR) 
(2001b) Climate Change 2001: The Scientific Basis. IPCC. IPCC Third 
Assessment Report, Cambridge University Press. 
Intergovernmental Panel on Climate Change (IPCC). (2007) Summary for 
policymakers. In M. Parry, O. F. Canziani, J. Palutikof, P. J. van der Linden, and 
C. E. Hanson, eds. Climate Change 2007: Impacts, Adaptation and 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Annexes | 92  
Vulnerability. Contribution of Working Group II to the Fourth Assessment 
Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: 
Cambridge University Press. 
Laukkonen, J., P. K. Blanco, J. Lenhart, M. Keiner, B. Cavric, and C. Kinuthia-Njenga. 
(2009) “Combining Climate Change Adaptation and Mitigation Measures at 
the Local Level.” Habitat International, 33 (3): 287–92. 
Linnerooth-Bayer J, Bals C, Mechler R (2009). "Insurance as part of a climate 
adaptation strategy." In: M. Hulme and H. Neufeldt (eds.), Making Climate 
Change Work for Us: European Perspectives on Adaptation and Mitigation 
Strategies
, Cambridge University Press, Cambridge, UK. 
McAndrew, K. (2002) Risks to small-scale cage farmers in Bangladesh, with emphasis 
on fish health experiences of the CARE-CAGES Project. p. 215-223. In: J.R. 
Arthur, M.J. Phillips, R.P. Subasinghe, M.B. Reantaso, and I.H. MacRae. (eds.) 
Primary Aquatic Animal Health Care in Rural, Small-scale, Aquaculture 
Development
. FAO Fish. Tech. Pap. No. 406. 
McGray, H., Anne Hamill and Rob Bradley. (2007) Weather the storm: options for 
framing adaptation and development. World Resources Institute, 2007. 57 
pp. 
McMichael, A.J. et al. (2003) Climate change and human health: risks and responses. 
World Health Organization, Geneva. 
Mohal & Hossain. (2007) Sarjan Cultivation Bangladesh. (Sarjan cultivation is 
traditional local adaptation practice in Bangladesh which integrates fish, tree 
and crop cultivation. The raised cultivation beds are adaptive to changing 
tidal flow and the risk of salinity.) 
OECD. (2009) Integrating climate change adaptation into development co-operation: 
policy guidance – ISBN-978-92-64-05476-9 © OECD 2009  
Oxfam. (2002) A Review of the Community-based Targeting and Distribution System 
Used in Kenya in 2000- 2002. Acacia Consultants Ltd, November. 
Oxfam. (2009a) Oxfam Disaster Risk Reduction and Climate Change Adaptation 
Resources: Case Study. Jasmine Rice in the Weeping Plain: Adapting Rice 
Farming to Climate Change in Northeast Thailand by Supaporn 
Anuchiracheeva & Tul Pinkaew. Oxfam Jun 2009. 
Oxfam International. (2009b) ‘People-Centered Resilience: Working with vulnerable 
farmers towards climate change adaptation’ Oxfam International Briefing 
Paper, Available at: 
http://www.oxfam.org/policy/people-centered-resilience
  
Parry, M.L., O.F. Canziani, J.P.Palutikof, P.J.van der Linden and C.E.hanson (eds.). 
(2007) Cross-Chapter case studies. In: Climate change 2007: Impacts, 
Adaptation and Vulnerability> contribution of working group II to the Fourth 
Assessment Report of the InterGovernmental Panel on Climate Change, 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Annexes | 93  
Cambridge University Press, Cambridge, UK, 843-868. 
McDiarmid, Paula. (2008) In the Face of Disaster: Children and Climate Change. 
International Save the Children Alliance, Cambridge House, Cambridge Grove, 
London W6 0LE, UK. 26p. 
Pettengelle, Catherine. (2010) Climate Change Adaptation, Oxfam International 
Research Report, April 2010. 
Practical Action. (2009) Accessed through website, 
http://practicalaction.org/disaster-
reduction/climatechange_ricebiodiversity
  
Prevention. (2009) website accessed May 15, 2009: 
www.proventionconsortium.org
   
Ramesh 
Randeep. 
 (2007) New hope for Bangladesh's climate change refugees: With 
the help of technology, relocated communities are changing the way they 
live. 
The Guardian
, Saturday 6 January 2007. 
Regmi, B. R., Morcrette, A., Paudyal, A., Bastakoti,R. and Pradhan, S. (2010) 
Participatory Tools and Techniques for Assessing Climate Change Impacts 
and Exploring Adaptation Options: A Community-based Tool Kit for 
Practitioners. Livelihoods and Forestry Program (LFP), Nepal. 
Russell, N. (2000) Evaluation of the Bangladesh Rehabilitation Projects post 1998 
floods supported by ECHO. Dhaka: ECHO, mimeo. 
Schneider, S., A. Rosencranz, and J.O. Niles (eds.). (2002) Climate Change Policy: A 
Survey. Washington DC: Island Press. 
SCUK. (2005b) Details available at: 
www.savethechildren.org.uk/scuk_cache/scuk/cache/cmsattach/2008_CMTD_f
or_web.pdf
www.ifpri.org/pubs/cp/targettransfers.htm
      
SEEDS. (2004) Report on orientation programs, SEEDS Report on Samta Project in 
Porbandar, Ahmedabad. 
Shaw, Rajib; SVRK Prabhakar and Ayako Fujieda (2005) “Community-level Climate 
Change Adaptation and Policy Issues, Inter-likages of environment, poverty 
and livelihood a case study from Gujarat, India,” Graduate School of Global 
Environmental Studies, Kyoto University. Mar 2005. 59 p. 
Skees, J., P. Hazell, and M. Miranda. (1999) New Approaches to Public/Private Crop 
Yield Insurance in Developing Countries, EPTD Discussion Paper No. 55, 
Washington, DC: International Food Policy Research Institute. 
SoS Sahel (2006) Participatory Impact Evaluation of SOS Sahel Activities in Meket 
Woreda (1995–2005).SoS Sahel, December. 
Sperling, F. (ed.). (2003) Poverty and Climate Change: Reducing the Vulnerability of 
the Poor Through Adaptation. Washington, DC: African Development Bank, 
Asian Development Bank, Department for International Development, 
European Commission Directorate General for Development, 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Annexes | 94  
Bundesministerium für Wirtshaftliche Zusammenarbeit, Directorate General 
for International Cooperation of the Netherlands, Organization for Economic 
Cooperation and Development, United Nations Development Program, 
United Nations Environment Program, and the World Bank. 
TERI (The Energy Research Institute). (2007) Synthesis Report on Vulnerability to 
Climate Variability and Change in India: Assessment of Adaptation Issues and 
Options. Unpublished report. 
UNFCCC. (2006a) United Nations Framework Convention on Climate Change: 
Handbook. UNFCCC Secretariat. 
Bonn, Germany. <http://unfccc.int/resource/docs/publications/handbook.pdf> 
UNFCCC. 2006b. Background paper – Impacts, vulnerability and adaptation to climate 
change in Latin America.UNFCCC Secretariat. Bonn, Germany. 
http://unfccc.int/files/adaptation/adverse_effects_and_response_measures_art
_48/application/pdf/200609_background_latin_american_wkshp.pdf
  
UNFCCC. 2007a. Vulnerability and adaptation to climate change in small island 
developing states – Background paper for the expert meeting on adaptation 
for Small Island developing States. UNFCCC Secretariat. Bonn, Germany. 
http://unfccc.int/files/adaptation/adverse_effects_and_response_measures_art
_48/application/pdf/200702_sids_adaptation_bg.pdf
  
UNFCCC. 2007b. Background paper – Impacts, vulnerability and adaptation to climate 
change in Asia. UNFCCC Secretariat. Bonn, Germany. 
http://unfccc.int/files/adaptation/methodologies_for/vulnerability_and_adaptat
ion/application/pdf/unfccc_asian_workshop_background_paper.pdf
  
UNICEF. 2000a. Lessons Learned from the Mozambique Floods. 
UNISDR (2009), Adaptation to Climate Change by Reducing Disaster Risks: Country 
Practices and Lessons. Briefing Note 2:Geneva, Nov 2009. 
http://www.unisdr.org/
   
Wang, R., and Y. E. Yaping. (2004) “Eco-city Development in China.” Ambio: A Journal 
of the Human Environment 33 (6): 341–42. 
WB/IFPRI (2002) The Targeting of Transfers in Developing Countries: Review of 
Experience andLessons. D Coady, M Grosh and J Hoddinott. Washington DC: 
World Bank and IFPRI, 
www.ifpri.org/pubs/cp/targettransfers.htm
WFP (2000) Full Report of the Evaluation of Indonesia EMOP 6006.0: Emergency 
Assistance to Drought Victims. Office of Evaluation OEDE. 
WHO. (1998a) The State of World Health, 1997 Report. World Health Organization, 
World Health Forum, 18, 248–260. 
WHO. (1998b) Weekly Epidemiological Records, 73 (20), 145–152. 
WHO. (2003) Climate change and human health : risks and responses / editors : A. J. 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Annexes | 95  
McMichael et al. . WORLD HEALTH ORGANIZATION, GENEVA. 2003 
Wiles, Peter, Kerry Selvester and Lourdes Fidalgo. (2005) Learning Lessons from 
Disaster Recovery: The Case of Mozambique. Hazard Management Unit, 
working paper series no. 12, World Bank. 
Willows, R. and R. Connell (2003) Climate Adaptation: Risk,Uncertainty, and Decision-
making. UKCIP Technical Report,UK Climate Impacts Program, Oxford, 2003. 
154 pp. 
World Bank. (2005) Learning Lessons from Disaster Recovery: The Case of 
Mozambique . Working paper series no. 12. Washington, D.C. April 2005. 
World Bank (2008) Climate Change Impacts in Drought and Flood Affected Areas: 
Case Studies in India. WB Report No. 43946-IN. South Asia Region, India 
Country Management Unit, Sustainable Development Department; Social, 
Environment and Water Resources Management Unit. India. 
World Bank. (2005b) Managing Agricultural Production Risk: Innovations in 
Developing Countries. Report 32727-GLB. Washington, DC: Agriculture and 
Rural Development Department, World Bank. Washington, D.C. 99 p. 
World Bank. (2008g) World Development Report 2009. Reshaping Economic 
Geography. Washington, DC: World Bank. 
World Bank. (2010) World Development Report 2010. Reshaping Economic 
Geography. Washington, DC: World Bank. 
World Resources Institute (WRI). (2007) Mcgray et. al. (eds.) Weathering the Storm: 
Options for Framing Adaptation and Development. 2007 Washington DC.  
Yip, S. C. T. (2008) “Planning for Eco-Cities in China: Visions, Approaches and 
Challenges.” Paper presented at the 44th ISOCARP Congress. The 
Netherlands. 
 
 
 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Annexes | 96  
Annex 3:  Glossary of climate-resilient recovery terminology 
 
The following concepts and terms have been identified from reports and documents 
of the IPCC, the UNFCCC, other UN agencies (e.g., UNDP, UNEP, ISDR), and national 
reports. For each term/concept, the paper presents various definitions that are found 
in literature, with the source of a specific definition stated at the end of the definition. 
The GN does not analyze these terms here. 
Adaptation: Changes in practices, both short- and long-term, that take into account 
the impacts of climate change. (IFPRI 2009) 
Adaptation:  A process by which strategies to moderate, cope with, and take 
advantage of the consequences of climatic events are enhanced, developed, and 
implemented. (UNDP, 2005) 
Adaptation: The process or outcome of a process that leads to a reduction in harm or 
risk of harm, or realization of benefits associated with climate variability and climate 
change. (UK Climate Impact Program (UK CIP, 2003)
 
Anticipatory Adaptation: Adaptation that takes place before impacts of climate 
change are observed. Also referred to as proactive adaptation.
 (IPCC 2007a)
 
Autonomous Adaptation: Adaptation that does not constitute a conscious response 
to climatic stimuli but is triggered by ecological changes in natural systems and by 
market or welfare changes in human systems. Also referred to as spontaneous 
adaptation.
 (IPCC 2007a)
 
Planned Adaptation: Adaptation that is the result of a deliberate policy decision, 
based on an awareness that conditions have changed or are about to change and 
that action is required to return to, maintain, or achieve a desired state.
 (IPCC 2007a) 
Adaptation: An adjustment made in response to a perceived change in a human or 
natural system in order to reduce vulnerability, build resilience, or both. Adaptation 
can be proactive (anticipatory) or reactive, and planned (involving public 
intervention) or autonomous (representing spontaneous action by private actors). 
(ADB & IFPRI, 2009) 
Adaptation: Adjustment in ecological, social, or economic systems in response to 
actual or expected climatic stimuli and their effects or impacts. This term refers to 
changes in processes, practices, or structures to moderate or offset potential 
damages or to take advantage of opportunities associated with changes in climate. It 
involves adjustments to reduce the vulnerability of communities, regions, or activities 
to climatic change and variability. 
Adaptation Assessment: The practice of identifying options to adapt to climate 
change and evaluating them in terms of criteria such as availability, benefits, costs, 
effectiveness, efficiency, and feasibility. (IPCC TAR, 2001a) 
Adaptive capacity (in relation to climate change impacts): The ability of a system to 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Annexes | 97  
adjust to climate change,  mitigate potential damages, take advantage of 
opportunities, or cope with consequences. (IPCC 2007a) 
Adaptive capacity: The ability of institutions and individuals to avoid potential 
damage, take advantage of opportunities, or cope with consequences of change. 
(ADB & IFPRI, 2009)  
Adaptation Costs: Costs of planning, preparing for, facilitating, and implementing 
adaptation measures, including transition costs. (IPCC TAR, 2001a) 
Agroecological zone: Defines zones based on combinations of soil, landform, and 
climatic characteristics. The particular parameters focus on the climatic and edaphic 
requirements of crops and on the management systems under which the crops are 
grown. (FAO 1996) 
Anthropogenic: Resulting from human activities. (IPCC 2007) 
Baseline/Reference: The baseline (or reference) is any datum against which change is 
measured. It might be a "current baseline," in which case it represents observable, 
present-day conditions. It might also be a "future baseline," which is a projected 
future set of conditions excluding the driving factor of interest. Alternative 
interpretations of the reference conditions can give rise to multiple baselines. (IPCC 
TAR, 2001a) 
Baseline/reference:  The state against which change is measured. It is either a 
“current baseline,” representing observable, present-day conditions, or a “future 
baseline,” a projected future set of conditions excluding the driving factor of interest. 
(IPCC 2007a) 
Capacity building: In the context of climate change, capacity building is developing 
the technical skills and institutional capabilities in developing countries and 
economies in transition to enable their participation in all aspects of adaptation to, 
mitigation of, and research on climate change, and in the implementation of the 
Kyoto Mechanisms, etc. (IPCC 2007a) 
Carbon fertilization: The effect of additional concentrations of CO
2
 in the atmosphere 
on plant growth. (IFPRI 2009) 
Carbon pool: Above-ground biomass, belowground biomass, litter, dead wood, and 
soil organic carbon. (IPCC 2007b) 
Carbon sequestration: The process by which carbon sinks remove CO
2
 from the 
atmosphere. This can be done naturally by plants, or artificially, for instance, by 
removing CO
2
 from coal-fired power plant emissions. (IFPRI 2009) 
Clean Development Mechanism (CDM): An arrangement under the Kyoto Protocol 
allowing industrialized countries with a GHG reduction commitment to invest in 
projects that reduce emissions in developing countries, as an alternative to more 
expensive emission reductions in their own countries. (IFPRI 2009) 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Annexes | 98  
Climate change: Refers to a change in the state of the climate that can be identified 
(e.g., by using statistical tests) by changes in the mean and/or the variability of its 
properties, and that persists for an extended period, typically decades or longer. 
(IPCC 2007) 
Climate change: A change of climate which is attributed directly or indirectly to 
human activity that alters the composition of the global atmosphere and which is in 
addition to natural climate variability observed over comparable time periods. See 
also climate variability. (UNFCCC) 
Climate Change: The climate of a place or region is changed if over an extended 
period (typically decades or longer) there is a statistically significant change in 
measurements of either the mean state or variability of the climate for that place or 
region. (Changes in climate may be due to natural processes or to persistent 
anthropogenic changes in atmosphere or in land use. Note that the definition of 
climate change used in the United Nations Framework Convention on Climate 
Change is more restricted, as it includes only those changes which are attributable 
directly or indirectly to human activity.) (UN/ISDR, 2004) 
Climate prediction: The result of an attempt to produce an estimate of the actual 
evolution of the climate in the future, for example, at seasonal, inter-annual, or long-
term time scales. Such predictions are usually probabilistic in nature. Also called a 
climate forecast. (IPCC 2007c) 
Climate projection: A projection of the response of the climate system to emission or 
concentration scenarios of GHG and aerosols, or radiative forcing scenarios, often 
based upon simulations by climate models. Climate projections are distinguished 
from climate predictions to emphasize that climate projections depend upon the 
emission/concentration/radiative forcing scenario used, as these are subject to 
substantial uncertainty. (IPCC 2007c) 
Climate proofing: Actions to protect infrastructure, systems, and processes against 
climate impacts. (Parry, Hammill, and Drexhage 2005) 
Climate scenario: A plausible and often simplified representation of the future 
climate, based on an internally consistent set of climatological relationships that has 
been constructed for explicit use in investigating the potential consequences of 
anthropogenic climate change, often serving as an input to impact models. Climate 
projections often serve as the raw material for constructing climate scenarios, but 
climate scenarios usually require additional information such as on the observed 
current climate. (IPCC 2007c) 
Climate threshold: The point at which the atmospheric concentration of GHG triggers 
a significant climatic or environmental event that is considered irreversible, such as 
widespread bleaching of corals or a collapse of oceanic circulation systems. (IPCC 
2007b) 
Climate Variability: Climate variability refers to variations in the mean state and other 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Annexes | 99  
statistics (such as standard deviations, or the occurrence of extremes) of the climate 
on all temporal and spatial scales beyond that of individual weather events. 
Variability may be due to natural internal processes within the climate system 
(internal variability), or to variations in natural or anthropogenic external forcing 
(external variability). See also climate change. (IPCC TAR, 2001)
  
Community-Based Disaster Risk Management (CBDRM): A process of disaster risk 
management in which ‘at risk’ communities are actively engaged in the identification, 
analysis, treatment, monitoring, and evaluation of disaster risks in order to reduce 
their vulnerabilities and enhance their capacities. (ADPC,2006) 
Coastal regulation zone (CRZ): 
Conference of the Parties (COP): The supreme body of the UNFCCC, comprising 
countries with right to vote that have ratified or acceded to the convention. 
Coping Capacity: The means by which people or organizations use available resources 
and abilities to face adverse consequences that could lead to a disaster. (In general, 
this involves managing resources, both in normal times as well as during crises or 
adverse conditions. The strengthening of coping capacities usually builds resilience to 
withstand the effects of natural and human-induced hazards.) (UN/ISDR, 2004) 
Coping:  The  “use of existing resources to achieve various desired goals during and 
immediately after unusual, abnormal, and adverse conditions of a hazardous event or 
process. The strengthening of coping capacities, together with preventive measures, 
is an important aspect of adaptation and usually builds resilience to withstand the 
effects of natural and other hazards" (Agrawal, 2008). From 
http://sitemaker.umich.edu/aid_climate_change/glossary_of_terms (accessed on 13 
August 2009). 
Coping range: The range of climate where the outcomes are beneficial or negative 
but tolerable. Beyond the coping range, the damages or loss are no longer tolerable 
and a society (or a system) is said to be vulnerable. (UNDP, 2005)
 
Downscaling:  A method that derives local- to regional-scale (10 to 100 km) 
information from larger-scale models or data analyses. Two main methods are 
dynamical downscaling and empirical/statistical downscaling. (IPCC 2007c). 
Drought: A deficiency that results in a water shortage for some activity or for some 
group. (Heim 2002) 
El Niño-Southern Oscillation (ENSO): The term El Niño was initially used to describe a 
warm water current that periodically flows along the coast of Ecuador and Peru, 
disrupting the local fishery. It has since become identified with a basin-wide warming 
of the tropical Pacific Ocean east of the dateline. This oceanic event is associated with 
a fluctuation of a global-scale tropical and subtropical surface pressure pattern called 
the Southern Oscillation. This coupled atmosphere-ocean phenomenon, with 
preferred time scales of 2 to about 7 years, is collectively known as the El Niño-
Southern Oscillation (ENSO). The cold phase of ENSO is called La Niña. (IPCC 2007c) 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Annexes | 100  
Ecosystem:  A dynamic complex of plant, animal, and microorganism communities 
and the nonliving environment interacting as a functional unit. (IFPRI 2009) 
Ecosystem resilience: A measure of how much disturbance an ecosystem can handle 
without shifting into a qualitatively different state. (SRI 2009) 
Extreme weather event: An event that is rare at a particular place and time of year, 
normally as rare as or rarer than the 10th or 90th percentile of the observed 
probability density function. (IPCC 2007c) 
Global warming: Refers to the gradual increase—observed or projected—in global 
surface temperature, as one of the consequences of radiative forcing caused by 
anthropogenic emissions. (IPCC 2007b) 
Governance:  An inclusive concept recognizing the contributions of various levels of 
government and the roles of the private sector, nongovernment actors, and civil 
society. (IPCC 2007b) 
Kyoto Protocol: A protocol to the international Framework Convention on Climate 
Change that aims to reduce greenhouse gases in an effort to prevent human-induced 
climate change. The treaty entered into force in February 2005, and had been ratified 
by 182 countries as of October 2008. (IFPRI 2009) 
La Niña: See El Niño-Southern Oscillation (ENSO). 
Local: Refers generally to the sub-national geographic scale, but can mean something 
as specific as a particular area or place. It is the scale of administration and analysis 
closest to people and their everyday activities. Local here refers to the interface 
between households and grassroots organizations, 
Maladaptation:  An action or process that increases vulnerability to climate change-
related hazards. Maladaptation often includes planned development policies and 
measures that deliver short-term gains or economic benefits but lead to exacerbated 
vulnerability in the medium to long-term. (UNDP 2006) 
Mitigation:  Actions to reduce GHG emissions and increase carbon sequestration. 
(IFPRI 2009) 
Monsoon:  A tropical and sub-tropical seasonal reversal in both surface winds and 
associated precipitation. (IPCC 2007a) 
National Adaptation Programs of Action (NAPA): A process for least developed 
countries (LDCs) to identify priority activities that respond to their urgent and 
immediate needs to adapt to climate change. (UNFCCC 2002) 
Potential: In the context of climate change, potential is the amount of mitigation or 
adaptation that could be—but is not yet— realized over time. Potential levels are 
identified as market, economic, technical, and physical. (IPCC 2007b) 
Reinsurance: The transfer of a portion of primary insurance risks to a secondary tier 
of insurers 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Annexes | 101  
(reinsurers); essentially "insurance for insurers." (IPCC, TAR, 2001) 
Resilience:  The ability of a social or ecological system to absorb disturbances while 
retaining the same basic structure and ways of functioning, the capacity for self-
organization, and the capacity to adapt to stress and change. (IPCC 2007a) 
Resilience: The capacity of a system, community, or society potentially exposed to 
hazards to adapt, by resisting or changing in order to reach and maintain an 
acceptable level of functioning and structure. This is determined by the degree to 
which the social system is capable of organizing itself to increase its capacity for 
learning from past disasters for better future protection and to improve risk 
reduction measures. (UN/ISDR, 2004) 
Risk: The result of the interaction of physically defined hazards with the properties of 
the exposed systems, i.e., their sensitivity or social vulnerability. (APF 2005) 
Risk (climate-related): The result of the interaction of physically defined hazards with 
the properties of the exposed systems, i.e., their sensitivity or (social) vulnerability. 
Risk can also be considered as the combination of an event, its likelihood, and its 
consequences, i.e., risk equals the probability of climate hazard multiplied by a given 
system’s vulnerability. (UNDP, 2005) 
Social resilience: “...[T]he ability of human communities to withstand and recover 
from stresses, such as environmental change or social, economic, or political 
upheaval” (SRI 2009). This idea is similar to adaptive capacity. 
Scenario: A forward-looking description of events and series of possible actions that 
can be used in policy-oriented research. (IFPRI 2009) 
Sea-level change: Sea level can change, both globally and locally, due to (i) changes in 
the shape of the ocean basins, (ii) changes in the total mass of water and (iii) changes 
in water density (steric). (IPCC 2007c) 
Sea-level rise: An increase in the mean level of the ocean. (IPCC 2007a) 
Sea wall: A human-made wall or embankment along a shore to prevent wave erosion. 
(IPCC 2007a) 
Sustainable development: Creating and maintaining prosperous social, economic, 
and ecological systems by fostering adaptive capabilities and creating opportunities. 
(Holling, 2001 as quoted in RA 2009) 
Spontaneous adaptation: See autonomous adaptation. 
Strategy: Refers to a broad plan of action that is implemented through policies and 
measures. A climate change adaptation strategy for a country refers to a general 
plan of action for addressing the impacts of climate change, including climate 
variability and extremes. It may include a mix of policies and measures, selected to 
meet the overarching objective of reducing the country’s vulnerability. (UNDP, 2005) 
Threshold: A property of a system or a response function, where the relationship 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Annexes | 102  
between the input variable and an output or other variable changes suddenly. It can 
be important to identify thresholds, and other non-linear relationships, as these may 
indicate rapid changes in risk. (UKCIP Technical Report. 2003. Climate Adaptation: 
Risk, Uncertainty and Decision-Making.)
 
Vulnerability: The degree to which a system is susceptible to, or unable to cope with, 
adverse effects of climate change, including climate variability and extremes. (IPCC 
2007a) Vulnerability is often denoted as the antonym of resilience. (SRI 2009) 
 
Vulnerability assessment: The process of identifying who and what is exposed and 
sensitive to change. Vulnerability assessment starts with a consideration of the 
factors that make people or the environment susceptible to harm, e.g., access to 
natural and financial resources, the ability to self-protect, and the availability of 
support networks so on. (E. Tompkins et al., 2005)
 
 
 
 
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E    
Annexes | 103  
Annex 4:  Acknowledgements 
 
IRP and UNDP India would like to acknowledge the input and expertise of the following 
individuals who participated in consultative workshops, served as resource person and 
technical experts, contributed case studies and/or peer reviewed the Guidance Note on 
Recovery: Climate Change. 
Akilesh Surjan, lecturer/Research Associate, UNU; Ashok Malhotra, UNDP; Atsushi 
Koresawa, ADRC; Bagmi Mishra, SMRC; Chris Summerville, Kiko Network (NPO); Dr. 
Jyotsna Bapat, Sr.IND.Consult; Dr. R.K.Mall, NIDM, MHA-Delhi; Dr.P.K. Dash, MCD, Delhi; 
George Haddow, Bullock & Haddow LLC; Gyaneshwar Singh, AMRITH, UP (NGO);Hari. 
Srinivas, UNEP; Hideki Yamamoto, Graduate School of Environmental Sciences, Okayama 
University; Rajib Shaw, Graduate School of Global Environmental Studies, KYOTO 
UNIVERSITY; Tetsuro Fujitsuka, APN; Kenro Taura, Secretary General, Kiko Network (NPO); 
Masahiko Isobe, Vice president, Department of Socio-Cultural environmental Studies, 
Graduate School of Frontier Sciences, The University of Tokyo; Matteo Marchisio, UNDP; 
Mikio Ishiwatari, JICA; Nupur Gupta, UNDP; Prashant Hedao, Auzoville; Rajeev Issar, BCER-
UNDP; Ramesh K. Jalan , Sol,E, UNDP; Reena Mohanty, SMRC; SVRK Prabhakar, Policy 
Researcher (Adaptation), IGES; Saiful Mohammad, UNDP; Satoru TET Oishi, Dr. Eng. 
Professor, Research Center for Urban Safety and Security KOBE University; Sindhuja 
Khajuria, UNDP; Tanvi Patel, CFID; Yoshihiro Imai, Deputy Director, Industry & 
Employment Department, Hyogo Prefectural Government.  
background image
G U I D A N C E   N O T E   O N   R E C O V E R Y :   C L I M A T E   C H A N G E  
Annexes | 104